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Preface

In this course, we cover the necessary mathematical tools that underpin modern theoretical physics.

We examine topics in quantum mechanics (with which you have some familiarity from previous

courses) and apply the mathematical tools learnt in the IB Mathematics course (complex anal-

ysis, differential equations, matrix methods, special functions etc.) to topics like perturbation

theory, scattering theory, etc. A course outline is provided below. Items indicated by a * are non-

examinable material. They are there to illustrate the application of the course material to topics

that you will come across in the PartII/Part III Theoretical Physics options. While we have tried

to make the notes as self-contained as possible, you are encouraged to read the relevant sections

of the recommended texts listed below. Throughout the notes, there are “mathematical interlude”

sections reminding you of the the maths you are supposed to have mastered in the IB course. The

“worked examples” are used to illustrate the concepts and you are strongly encouraged to work

through every step, to ensure that you master these concepts and the mathematical techniques.

We are most grateful to Dr Guna Rajagopal for preparing the lecture notes of which these are an

updated version.

Course Outline

• Operator Methods in Quantum Mechanics (2 lectures): Mathematical foundations of

non-relativistic quantum mechanics; vector spaces; operator methods for discrete and contin-

uous eigenspectra; generalized form of the uncertainty principle; simple harmonic oscillator;

delta-function potential; introduction to second quantization.

• Angular Momentum (2 lectures): Eigenvalues/eigenvectors of the angular momentum

operators (orbital/spin); spherical harmonics and their applications; Pauli matrices and

spinors; addition of angular momenta.

• Approximation Methods for Bound States (2 lectures): Variational methods and their

application to problems of interest; perturbation theory (time-independent and time depen-
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dent) including degenerate and non-degenerate cases; the JWKB method and its application

to barrier penetration and radioactive decay.

• Scattering Theory (2 lectures): Scattering amplitudes and differential cross-section; par-

tial wave analysis; the optical theorem; Green functions; weak scattering and the Born ap-

proximation; *relation between Born approximation and partial wave expansions; *beyond

the Born approximation.

• Identical Particles in Quantum Mechanics (2 lectures): Wave functions for non-

interacting systems; symmetry of many-particle wave functions; the Pauli exclusion principle;

fermions and bosons; exchange forces; the hydrogen molecule; scattering of identical parti-

cles; *second quantization method for many-particle systems; *pair correlation functions for

bosons and fermions;

• Density Matrices (2 lectures): Pure and mixed states; the density operator and its

properties; position and momentum representation of the density operator; applications in

statistical mechanics.

Problem Sets

The problem sets (integrated within the lecture notes) are a vital and integral part of the course.

The problems have been designed to reinforce key concepts and mathematical skills that you will

need to master if you are serious about doing theoretical physics. Many of them will involve signif-

icant algebraic manipulations and it is vital that you gain the ability to do these long calculations

without making careless mistakes! They come with helpful hints to guide you to their solution.

Problems that you may choose to skip on a first reading are indicated by †.

Books

There is no single book that covers all of material in this course to the conceptual level or mathe-

matical rigour required. Below are some books that come close. Liboff is at the right level for this

course and it is particularly strong on applications. Sakurai is more demanding mathematically

although he makes a lot of effort to explain the concepts clearly. This book is a recommended text

in many graduate schools. Reed and Simon show what is involved in a mathematically rigorous

treatment.

At about the level of the course: Liboff, Quantum Mechanics, 3rd Ed., Addison-Wesley.

At a more advanced level: Sakurai, Quantum Mechanics, 2nd Ed., Addison-Wesley;

Reed and Simon, Methods of Modern Mathematical Physics, Academic Press.
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Chapter 1

Operator Methods In Quantum

Mechanics

1.1 Introduction

The purpose of the first two lectures is twofold. First, to review the mathematical formalism of

elementary non-relativistic quantum mechanics, especially the terminology. The second purpose is

to present the basic tools of operator methods, commutation relations, shift operators, etc. and

apply them to familiar problems such as the harmonic oscillator. Before we get down to the operator

formalism, let’s remind ourselves of the fundamental postulates of quantum mechanics as covered

in earlier courses. They are:

• Postulate 1: The state of a quantum-mechanical system is completely specified by a function

Ψ(r, t) (which in general can be complex) that depends on the coordinates of the particles

(collectively denoted by r) and on the time. This function, called the wave function or the

state function, has the important property that Ψ∗(r, t)Ψ(r, t) dr is the probability that the

system will be found in the volume element dr, located at r, at the time t.

• Postulate 2: To every observable A in classical mechanics, there corresponds a linear Her-

mitian operator Â in quantum mechanics.

• Postulate 3: In any measurement of the observable A, the only values that can be obtained

are the eigenvalues {a} of the associated operator Â, which satisfy the eigenvalue equation

ÂΨa = aΨa

1
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where Ψa is the eigenfunction of Â corresponding to the eigenvalue a.

• Postulate 4: If a system is in a state described by a normalised wavefunction Ψ, and the

eigenfunctions {Ψa} of Â are also normalised, then the probability of obtaining the value a

in a measurement of the observable A is given by

P (a) =

∣

∣

∣

∣

∫ ∞

−∞
Ψ∗

aΨ dr

∣

∣

∣

∣

2

(Recall that a function Φ(r) such that
∫ ∞

−∞
Φ∗Φ dr = 1

is said to be normalised.)

• Postulate 5: As a result of a measurement of the observable A in which the value a is

obtained, the wave function of the system becomes the corresponding eigenfunction Ψa. (This

is sometimes called the collapse of the wave function.)

• Postulate 6: Between measurements, the wave function evolves in time according to the

time-dependent Schrödinger equation

∂Ψ

∂t
= − i

h̄
ĤΨ

where Ĥ is the Hamiltonian operator of the system.

The justification for the above postulates ultimately rests with experiment. Just as in geometry one

sets up axioms and then logically deduces the consequences, one does the same with the postulates

of QM. To date, there has been no contradiction between experimental results and the outcomes

predicted by applying the above postulates to a wide variety of systems.

We now explore the mathematical structure underpinning quantum mechanics.

1.1.1 Mathematical foundations

In the standard formulation of quantum theory, the state of a physical system is described by a

vector in a Hilbert space H over the complex numbers. The observables and dynamical variables

of the system are represented by linear operators which transform each state vector into another

(possibly the same) state vector. Throughout this course (unless stated otherwise) we will adopt

Dirac’s notation: thus a state vector is denoted by a ket |Ψ〉. This ket provides a complete de-

scription of the physical state. In the next section we will explore the mathematical properties of

the Hilbert space and learn why it plays such a central role in the mathematical formulation of

quantum mechanics.
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1.1.2 Hilbert space

A Hilbert space H,

H = {|a〉, |b〉, |c〉, . . .}, (1.1)

is a linear vector space over the field of complex number C i.e. it is an abstract set of elements

(called vectors) with the following properties

1. ∀ |a〉, |b〉 ∈ H we have

• |a〉 + |b〉 ∈ H (closure property)

• |a〉 + |b〉 = |b〉 + |a〉 (commutative law)

• (|a〉 + |b〉) + |c〉 = |a〉 + (|b〉) + |c〉) (associative law)

• ∃ a null vector, |null〉 ∈ H with the property

|a〉 + |null〉 = |a〉 (1.2)

• ∀ |a〉 ∈ H ∃ | − a〉 ∈ H such that

|a〉 + | − a〉 = |null〉 (1.3)

• ∀ α, β ∈ C

α(|a〉 + |b〉) = α|a〉 + α|b〉 (1.4)

(α+ β)|a〉 = α|a〉 + β|a〉 (1.5)

(αβ)|a〉 = α(β|a〉) (1.6)

1|a〉 = |a〉 (1.7)

2. A scalar product is defined in H. It is denoted by (|a〉, |b〉) or 〈a|b〉, yielding a complex number.

The scalar product has the following properties

(|a〉, λ|b〉) = λ(|a〉, |b〉) (1.8)

(|a〉, |b〉 + |c〉) = (|a〉, |b〉) + (|a〉, |c〉) (1.9)

(|a〉, |b〉) = (|b〉, |a〉)∗ (1.10)
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The last equation can also be written as

〈a|b〉 = 〈b|a〉∗ (1.11)

From the above, we can deduce that

(λ|a〉, |b〉) = λ∗(|a〉, |b〉) (1.12)

= λ∗〈a|b〉 (1.13)

and

(|a1〉 + |a2〉, |b〉) = (|a1〉, |b〉) + (|a2〉, |b〉) (1.14)

= 〈a1|b〉 + 〈a2|b〉 (1.15)

The norm of a vector is defined by

‖a‖ =
√

〈a|a〉 (1.16)

and corresponds to the “length” of a vector. Note that the norm of a vector is a real number ≥ 0.

(This follows from (1.11)).

1.1.3 The Schwartz inequality

Given any |a〉, |b〉 ∈ H we have

‖a‖ ‖b‖ ≥ |〈a|b〉| (1.17)

with the equality only being valid for the case

|a〉 = λ|b〉 (1.18)

(with λ a complex number) i.e. when one vector is proportional to the other.

Proof

Define a |c〉 such that

|c〉 = |a〉 + λ|b〉 (1.19)

where λ is an arbitrary complex number. Whatever λ may be:

〈c|c〉 = 〈a|a〉 + λ〈a|b〉 + λ∗〈b|a〉 + λλ∗〈b|b〉 (1.20)

≥ 0 (1.21)
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Choose for λ the value

λ = −〈b|a〉
〈b|b〉 (1.22)

and substitute into the above equation, which reduces to

〈a|a〉 − 〈a|b〉〈b|a〉
〈b|b〉 ≥ 0 (1.23)

Since 〈b|b〉 is positive, multiply the above inequality by 〈b|b〉 to get

〈a|a〉〈b|b〉 ≥ 〈a|b〉〈b|a〉 (1.24)

≥ |〈a|b〉|2 (1.25)

and finally taking square roots and using the definition of the norm we get the required result.

(This result will be used when we prove the generalised uncertainty principle).

1.1.4 Some properties of vectors in a Hilbert space

∀ |a〉 ∈ H, a sequence {|an〉} of vectors exists, with the property that for every ε > 0, there exists

at least one vector |an〉 of the sequence with

‖|a〉 − |an〉‖ ≤ ε (1.26)

A sequence with this property is called compact.

The Hilbert space is complete i.e. every |a〉 ∈ H can be arbitrarily closely approximated by a

sequence {|an〉}, in the sense that

lim
n→∞ ‖|a〉 − |an〉‖ = 0 (1.27)

Then the sequence {|an〉} has a unique limiting value |a〉.

The above properties are necessary for vector spaces of infinite dimension that occur in QM.

1.1.5 Orthonormal systems

Orthogonality of vectors. |a〉, |b〉 ∈ H are said to be orthogonal if

〈a|b〉 = 0 (1.28)

Orthonormal system. The set {|an〉} of vectors is an orthonormal system if the vectors are

orthogonal and normalised, i.e.

〈an|am〉 = δn,m (1.29)
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where

δn,m =







1 m = n

0 m 6= n

Complete orthonormal system. The orthonormal system {|an〉} is complete in H if an arbi-

trary vector |a〉 ∈ H can be expressed as

|a〉 =
∑

n

αn|an〉 (1.30)

where in general αn are complex numbers whose values are

αm = 〈am|a〉 (1.31)

Proof

〈am|a〉 = 〈am|
(

∑

n

αn|an〉
)

=
∑

n

αn〈am|an〉

=
∑

n

αnδm,n

= αm (1.32)

Thus we can write

|a〉 =
∑

n

|an〉〈an|a〉 (1.33)

Note that this implies

Î =
∑

n

|an〉〈an| (1.34)

called the “resolution of the identity operator” or the closure relation. The complex

numbers αn are called the an−representation of |a〉, i.e. they are the components of the vector

|a〉 in the basis {|an〉}.

1.1.6 Operators on Hilbert space

A linear operator Â induces a mapping of H onto itself or onto a subspace of H. (What this means

is that if Â acts on some arbitrary vector ∈ H the result is another vector ∈ H or in some subset

of H. Hence

Â(α|a〉 + β|b〉) = αÂ|a〉 + βÂ|b〉 (1.35)
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The operator Â is bounded if

‖Â|a〉‖ ≤ C‖|a〉‖ (1.36)

∀ |a〉 ∈ H, and C is a real positive constant (<∞).

Bounded linear operators are continuous, i.e. if

|an〉 → |a〉 (1.37)

then it follows that

Â|an〉 → Â|a〉 (1.38)

Two operators Â and B̂ are equal (Â = B̂) if, ∀|a〉 ∈ H,

Â|a〉 = B̂|a〉 (1.39)

The following definitions are valid ∀ |a〉 ∈ H:

Unit operator, Î

Î|a〉 = |a〉 (1.40)

Zero operator, 0̂

0̂|a〉 = |null〉 (1.41)

Sum operator, Â+ B̂

(Â+ B̂)|a〉 = Â|a〉 + B̂|a〉 (1.42)

Product operator, ÂB̂

(ÂB̂)|a〉 = Â(B̂|a〉) (1.43)

Adjoint operator, Â† : Given Â, an adjoint operator, Â†, exists if ∀ |a〉, |b〉 ∈ H

(|b〉, Â|a〉) = (Â†|b〉, |a〉) (1.44)

or

〈b|Â|a〉 = 〈a|Â†|b〉∗ (1.45)

The adjoint of an operator has the following properties:

(αÂ)† = α∗Â† (1.46)

(Â+ B̂)† = Â† + B̂† (1.47)

(ÂB̂)† = B̂†Â† (1.48)

(Â†)† = Â (1.49)
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If Â is Hermitian, then

Â = Â†

〈b|Â|b〉 = 〈b|Â†|b〉

= 〈b|Â†|b〉∗

= 〈b|Â|b〉∗

= real (1.50)

Unitary operator, U : The operator Û is called unitary if

Û Û † = Û †Û = Î (1.51)

Projection operator, |a〉〈a| : Given any normalised vector |a〉, a projection operator P̂ can be

defined as the operator that projects any vector into its component along |a〉

P̂ |b〉 = 〈a|b〉|a〉 = |a〉〈a|b〉 (1.52)

We write this symbolically as

P̂ = |a〉〈a| (1.53)

Note that a projection operator is idempotent: its square (or any power) is equal to itself

P̂ 2 = |a〉〈a|a〉〈a| = |a〉〈a| (1.54)

since |a〉 is normalised. Note that the resolution of the identity (1.34) is a sum of projection

operators.

Commutator, [Â, B̂]

[Â, B̂] = ÂB̂ − B̂Â (1.55)

Note that in general

ÂB̂ 6= B̂Â (1.56)

Properties of commutators:

[Â, B̂] = −[B̂, Â] (1.57)

[Â, (B̂ + Ĉ)] = [Â, B̂] + [Â, Ĉ] (1.58)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] (1.59)

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0̂ (1.60)

[Â, B̂]
†

= [B̂†, Â†] (1.61)
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EXAMPLE

Suppose the operators P̂ and Q̂ satisfy the commutation relation

[P̂ , Q̂] = aÎ

where a is a constant (real) number.

• Reduce the commutator [P̂ , Q̂n] to its simplest possible form.

Answer: Let

R̂n = [P̂ , Q̂n] n = 1, 2, · · ·

Then R̂1 = [P̂ , Q̂] = aÎ and

R̂n+1 = [P̂ , Q̂n+1] = [P̂ , Q̂nQ̂] = [P̂ , Q̂n]Q̂+ Q̂n[P̂ , Q̂]

(We have used [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ). Therefore,

R̂n+1 = R̂nQ̂+ Q̂n(aÎ) = R̂nQ̂+ aQ̂n

which gives R̂2 = 2aQ̂, R̂3 = 3aQ̂2 etc. This implies that

R̂n = [P̂ , Q̂n] = naQ̂n−1

Note that in general,

[P̂ , f(Q̂)] = a
∂f

∂Q̂

• Reduce the commutator

[P̂ , eiQ̂]

to its simplest form.

Answer: Use results above to get

[P̂ , eiQ̂] = iaeiQ̂
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Problem 1: Two operators, Â and B̂ satisfy the equations

Â = B̂†B̂ + 3

Â = B̂B̂† + 1 (1.62)

• Show that Â is self-adjoint

• Find the commutator [B̂†, B̂]

Answer: −2Î

• Find the commutator [Â, B̂]

Answer: −2B̂

1.1.7 Eigenvectors and eigenvalues

If

Â|a〉 = a|a〉 (1.63)

then |a〉 is an eigenvector of the operator Â with eigenvalue a (which in general is a complex

number). The set of all eigenvalues of a operator is called its spectrum, which can take discrete

or continuous values (or both). For the case of Hermitian operators the following is true:

• The eigenvalues are real

• The eigenvectors corresponding to different eigenvalues are orthogonal i.e

Â|a〉 = a|a〉 (1.64)

Â|a′〉 = a′|a′〉 (1.65)

and if a 6= a′, then

〈a|a′〉 = 0 (1.66)

• In addition, the normalised eigenvectors of a bounded Hermitian operator give rise to a

countable, complete orthonormal system. The eigenvalues form a discrete spectrum.
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Problem 2: Prove that if Ĥ is a Hermitian operator, then its eigenvalues are real and its eigen-

vectors (corresponding to different eigenvalues) are orthogonal.

Answer: To be discussed in class.

From above, we deduce that an arbitrary |ψ〉 ∈ H can be expanded in terms of the complete,

orthonormal eigenstates {|a〉} of a Hermitian operator Â:

|ψ〉 =
∑

a

|a〉〈a|ψ〉 (1.67)

where the infinite set of complex numbers {〈a|ψ〉} are called the A representation of |ψ〉.

Problem 3: The operator Q̂ satisfies the equations

Q̂†Q̂† = 0

Q̂Q̂† + Q̂†Q̂ = Î (1.68)

The Hamiltonian for the system is given by

Ĥ = αQ̂Q̂†

where α is a real constant.

• Show that Ĥ is self-adjoint

• Find an expression for Ĥ2 in terms of Ĥ

Answer: Use the anti-commutator property of Q̂ to get Ĥ2 = αĤ.

• Deduce the eigenvalues of Ĥ using the results obtained above.

Answer:The eigenvalues are 0 and α.
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Problem 4 : Manipulating Operators

• Show that if |a〉 is an eigenvector of Â with eigenvalue a, then it is an eigenvector of f(Â)

with eigenvalue f(a).

• Show that

(ÂB̂)† = B̂†Â† (1.69)

and in general

(ÂB̂Ĉ . . .)† = . . . Ĉ†B̂†Â† (1.70)

• Show that ÂÂ† is Hermitian even if Â is not.

• Show that if Â is Hermitian, then the expectation value of Â2 are non-negative, and the

eigenvalues of Â2 are non-negative.

• Suppose there exists a linear operator Â that has an eigenvector |ψ〉 with eigenvalue a. If

there also exists an operator B̂ such that

[Â, B̂] = B̂ + 2B̂Â2 (1.71)

then show that B̂|ψ〉 is an eigenvector of Â and find the eigenvalue.

Answer: Eigenvalue is 1 + a+ 2a2.

EXAMPLE

• (a) Suppose the operators Â and B̂ commute with their commutator, i.e. [B̂, [Â, B̂]] =

[Â, [Â, B̂]] = 0. Show that [Â, B̂n] = nB̂n−1[Â, B̂] and [Ân, B̂] = nÂn−1[Â, B̂].

Answer: To show this, consider the following steps:

[Â, B̂n] = ÂB̂n − B̂nÂ (1.72)

= ÂB̂B̂n−1 − B̂ÂB̂n−1 + B̂(ÂB̂)B̂n−2 − B̂(B̂Â)B̂n−3 + · · · B̂n−1ÂB̂ − B̂n−1B̂Â

= [Â, B̂]B̂n−1 + B̂[Â, B̂]B̂n−2 + · · · + B̂n−1[Â, B̂]
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Since B̂ commutes with [Â, B̂], we obtain

[Â, B̂n] = B̂n−1[Â, B̂] + B̂n−1[Â, B̂] + · · · + B̂n−1[Â, B̂] = nB̂n−1[Â, B̂]

as required. In the same way, since [Ân, B] = −[B̂, Ân] and using the above steps, we obtain

[Ân, B̂] = nÂn−1[Â, B̂]

as required.

• (b) Just as in (a), show that for any analytic function, f(x), we have [Â, f(B̂)] = [Â, B̂]f
′
(B̂),

where f ′(x) denotes the derivative of f(x).

Answer: We use the results from (a). Since f(x) is analytic, we can expand it in a power

series
∑

n anx
n. Then

[Â, f(B̂)] = [Â,
∑

n

anB̂
n] (1.73)

=
∑

n

an[Â, B̂n]

= [Â, B̂]
∑

n

n an B̂
n−1

= [Â, B̂]f
′

(B̂)

• (c) Just as in (a), show that eÂeB̂ = eÂ+B̂ e
1

2
[Â,B̂].

Answer: Consider an operator F̂ (s) which depends on a real parameter s:

F̂ (s) = esÂ esB̂

Its derivative with respect to s is:

dF̂

ds
=

(

d

ds
esÂ

)

esB̂ + esÂ
(

d

ds
esB̂

)

(1.74)

= ÂesÂesB̂ + esÂB̂esB̂

= ÂesÂesB̂ + esÂB̂e−sÂesÂesB̂

=

[

Â+ esÂB̂e−sÂ

]

F̂ (s)

Using part (a), we can write

[esÂ, B̂] = −[B̂, esÂ] = −s[B̂, Â]esÂ = s[Â, B̂]esÂ



14 CHAPTER 1. OPERATOR METHODS IN QUANTUM MECHANICS

This means that esÂB̂ = B̂e−sÂ + s[Â, B̂]esÂ and esÂB̂e−sÂ = B̂+ s[Â, B̂]. Substituting this

into the equation above, we get

dF̂

ds
=

[

Â+ B̂ + s[Â, B̂]

]

F̂ (s)

Since Â+ B̂ and [Â, B̂] commute, we can integrate this differential equation. This yields

F̂ (s) = F̂ (0) e(Â+B̂)s+ 1

2
[Â,B̂]s2

Setting s = 0, we obtain F̂ (0) = Î. Finally substituting F̂ (0) and s = 1, we obtain the

required result.

• (d) Prove the following identity for any two operators Â and B̂:

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + · · · (1.75)

Answer: To show this, define

f(λ) = eλÂB̂e−λÂ

where λ is a real parameter. Then,

f(0) = B̂ (1.76)

f(1) = eÂB̂e−Â

f ′(λ) = eλÂ[Â, B̂]e−λÂ

f ′(0) = [Â, B̂]

f ′′(λ) = eλÂ[Â, [Â, B̂]]e−λÂ

f ′′(0) = [Â, [Â, B̂]]

The Taylor expansion of f(λ) is given by

f(λ) = f(0) + λf ′(0) +
1

2!
λ2f ′′(0) + · · ·

This implies

eλÂB̂e−λÂ = B̂ + λ[Â, B̂] +
1

2!
λ2[Â, [Â, B̂]] + · · ·

Now setting λ = 1, we get the required result.
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1.1.8 Observables

A Hermitian operator Â is an observable if its eigenvectors |ψn〉 are a basis in the Hilbert space:

that is, if an arbitrary state vector can be written as

|ψ〉 =
D
∑

n=1

|ψn〉〈ψn|ψ〉 (1.77)

(If D, the dimensionality of the Hilbert space is finite, then all Hermitian operators are observables;

if D is infinite, this is not necessarily so.)

In quantum mechanics, it is a postulate that every measurable physical quantity is described by

an observable and that the only possible result of the measurement of a physical quantity is one

of the eigenvalues of the corresponding observable. Immediately after an observation of Â which

yields the eigenvalue an, the system is in the corresponding state |ψn〉. It is also a postulate that

the probability of obtaining the result an when observing Â on a system in the normalised state

|ψ〉, is

P (an) = |〈ψn|ψ〉|2 (1.78)

(The probability is determined empirically by making a large number of separate observations of

Â, each observation being made on a copy of the system in the state |ψ〉.) The normalisation of

|ψ〉 and the closure relation ensure that

D
∑

n=1

P (an) = 1 (1.79)

For an observable, by using the closure relation, one can deduce that

Â =
∑

n

an|ψn〉〈ψn| (1.80)

which is the spectral decomposition of Â.

The expectation value 〈Â〉 of an observable Â, when the state vector is |ψ〉, is defined as the

average value obtained in the limit of a large number of separate observations of Â, each made on

a copy of the system in the state |ψ〉. From equations (1.78) and (1.80), we have

〈Â〉 =
∑

n

anP (an) =
∑

n

an|〈ψn|ψ〉|2

=
∑

n

an〈ψ|ψn〉〈ψn|ψ〉 = 〈ψ|Â|ψ〉 (1.81)

Let Â and B̂ be two observables and suppose that rapid successive measurements yield the results

an and bn respectively. If immediate repetition of the observations always yields the same results

for all possible values of an and bn, then Â and B̂ are compatible (or non-interfering) observables.
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Problem 5: A system described by the Hamiltonian Ĥ0 has just two orthogonal energy eigenstates,

|1〉 and |2〉 with

〈1|1〉 = 1

〈1|2〉 = 0

〈2|2〉 = 1 (1.82)

The two eigenstates have the same eigenvalues E0:

Ĥ0|i〉 = E0|i〉

for i = 1, 2. Suppose the Hamiltonian for the system is changed by the addition of the term V̂ ,

giving

Ĥ = Ĥ0 + V̂

The matrix elements of V̂ are

〈1|V̂ |1〉 = 0

〈1|V̂ |2〉 = V12

〈2|V̂ |2〉 = 0 (1.83)

• Find the eigenvalues of Ĥ

• Find the normalised eigenstates of Ĥ in terms of |1〉 and |2〉.

Answer: This will be done in class.

1.1.9 Generalised uncertainty principle

Suppose Â and B̂ are any two non-commuting operators i.e.

[Â, B̂] = iĈ (1.84)

(where Ĉ is Hermitian). It can be shown that

∆A∆B ≥ 1

2

∣

∣

∣〈Ĉ〉
∣

∣

∣ (1.85)
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where

∆A =
[

〈(Â− 〈Â〉)2〉
]

1

2 (1.86)

and similarly for ∆B. The expectation value is over some arbitrary state vector. This is the

generalised uncertainty principle, which implies that it is not possible for two non-commuting

observables to possess a complete set of simultaneous eigenstates. In particular if Ĉ is a non-zero

real number (times the unit operator), then Â and B̂ cannot possess any simultaneous eigenstates.

Problem 6: Prove (1.85).

If the eigenvalues of Â are non-degenerate, the normalised eigenvectors |ψn〉 are unique to within

a phase factor i.e. the kets |ψn〉 and eiθ|ψn〉, where θ is any real number yield the same physical

results. Hence a well defined physical state can be obtained by measuring Â. If the eigenvalues

of Â are degenerate we can in principle identify additional observables B̂, Ĉ, . . . which commute

with Â and each other (but not functions of Â or each other), until we have a set of commuting

observables for which there is no degeneracy. Then the simultaneous eigenvectors |an, bp, cq, . . .〉
are unique to within a phase factor; they are a basis for which the orthonormality relations are

〈an′ , bp′ , cq′ , . . . |an, bp, cq, . . .〉 = δn′nδp′pδq′q . . . (1.87)

The observables Â, B̂, Ĉ, . . . constitute a complete set of commuting observables (CSCO).

A well defined initial state can be obtained by an observation of a CSCO.

Problem 7: Given a set of observables Â, B̂, . . . prove that any one of the following conditions

proves the other two:

• Â, B̂, . . . commute with each other,

• Â, B̂, . . . are compatible,

• Â, B̂, . . . possess a complete orthonormal set of simultaneous eigenvectors (assuming no de-

generacy).
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1.1.10 Basis transformations

Suppose {|ψn〉} and {|φn〉} respectively are the eigenvectors of the non-commuting observables Â

and B̂ of a system. This means that we can use either {|ψn〉} or {|φn〉} as basis kets for the Hilbert

space. The two bases are related by the transformation

|φn〉 = Û |ψn〉 (1.88)

where

Û =
∑

i

|φi〉〈ψi| (1.89)

Orthonormality of {|φn〉} and the closure relation for {|ψn〉} ensure that Û is a unitary operator

(i.e. Û †Û = Î).

Problem 8:

• Prove that Û as defined above is unitary.

• Starting from the eigenvalue equation:

Â|ψn〉 = an|ψn〉 (1.90)

show that the operator

Â′ = Û ÂÛ † (1.91)

has Û |ψn〉 as its eigenvector with eigenvalue an.

• Show also that the inner product, 〈Ψ|Φ〉 is preserved under a unitary transformation.

• If Û is unitary and Â is Hermitian, then show that Û ÂÛ † is also Hermitian.

• Show that the form of the operator equation Ĝ = ÂB̂ is preserved under a unitary transfor-

mation.

The problem above shows that a unitary transformation preserves the form of the eigenvalue equa-

tion. In addition, since the eigenvalues of an operator corresponding to an observable are physically

measurable quantities, these values should not be affected by a transformation of basis in Hilbert

space. It therefore follows that the eigenvalues and the Hermiticity of an observable are preserved

in a unitary transformation.
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1.1.11 Matrix representation of operators

From the closure relation (or resolution of the identity) it is possible to express any operator as

Â = ÎÂÎ =
∑

n

∑

n′

|n′〉〈n′|Â|n〉〈n| (1.92)

where the set {|n〉} are a set of basis vectors in the Hilbert space and the complex numbers 〈n′|Â|n〉
are a matrix representation of Â. (Note that the matrix representation of Â† is obtained by

transposing the matrix representation of Â and taking the complex conjugate of each element.)

The table below lists various matrix properties:

Matrix Definition Matrix Elements

Symmetric A = AT Apq = Aqp

Antisymmetric A = −AT Apq = −Aqp

Orthogonal A = (AT )−1 (ATA)pq = δpq

Real A = A∗ Apq = A∗
pq

Pure Imaginary A = −A∗ Apq = −A∗
pq

Hermitian A = A† Apq = A∗
qp

Anti-Hermitian A = −A† Apq = −A∗
qp

Unitary A = (A†)−1 (A†A)pq = δpq

Singular |A| = 0

where T denotes the transpose of a matrix and |A| denotes the determinant of matrix A.

Problem 9:

• If A,B,C are 3 n×n square matrices, show that Tr(ABC) = Tr(CAB) = Tr(BCA), where

Tr denotes the trace of a matrix, i.e. the sum of its diagonal elements.

• Show that the trace of a matrix remains the same (i.e. invariant) under a unitary transfor-

mation.

• Let A be an n× n square matrix with eigenvalues a1, a2, . . . , an. Show that |A| = a1a2 . . . an

and hence that the determinant of A is another invariant property.

• Show that if A is Hermitian, then U = (A+ iI)(A− iI)−1 is unitary. (I here is the identity

matrix.)
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• Show that |I + εA| = I + ε TrA+O(ε2) where A is an n× n square matrix.

• Show that |eA| = eTrA where A is a n× n square matrix.

1.1.12 Mathematical interlude: Dirac delta function

Definition

The Dirac delta function δ(x) is defined as follows

δ(x) =







0 x 6= 0

∞ x = 0

Its integral properties are

∫ ∞

−∞
f(x)δ(x)dx = f(0)

∫ ∞

−∞
δ(x)dx = 1

∫ ∞

−∞
f(x′)δ(x− x′)dx′ = f(x)

∫ ∞

−∞
δ(x− x′)dx′ = 1 (1.93)

Note that
∫ b

a
f(x)δ(x)dx =







f(0) 0 ∈ [a, b]

0 Otherwise

In three dimensions, the above definition is generalised as follows

∫

all space
f(r)δ(r − a)dr = f(a) (1.94)

In mathematics, an object such as δ(x), which is defined in terms of its integral properties, is called

a distribution.

Some useful properties

δ(x) = δ(−x)
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δ
′

(x) = −δ′(−x)

x δ(x) = 0

δ(a x) =
1

|a| δ(x)

δ(x2 − a2) =
1

|2a|

[

δ(x− a) − δ(x+ a)

]

∫ ∞

−∞
δ(a− x) δ(x− b)dx = δ(a− b)

f(x) δ(x− a) = f(a) δ(x− a)

x δ
′

(x) = −δ(x)
∫

g(x) δ

[

f(x) − a

]

dx =
g(x)

|df/dx|

∣

∣

∣

∣

x=x0, f(x0)=a
(1.95)

These relations can easily be verified by using some arbitrary function. For example, to prove

x δ
′

(x) = −δ(x)

we proceed as follows

∫ ∞

−∞
f(x)x δ

′

(x)dx =

∫ ∞

−∞

d

dx

(

f x δ

)

dx−
∫ ∞

−∞
δ
d

dx

(

f x

)

dx

= −
∫ ∞

−∞
δ(x)

(

x
df

dx
+ f

)

dx

= −
∫ ∞

−∞
δ(x)f(x)dx (1.96)

where we have used integration by parts.

1.1.13 Operators with continuous or mixed (discrete-continuous) spectra

There exist operators which do not have a purely discrete spectra, but either have a continuous or

mixed (discrete-continuous) spectrum. An example is the Hamiltonian for the hydrogen atom. In

general, all Hamiltonians for atoms and nuclei have both discrete and continuous spectral ranges.

Usually the discrete spectrum is connected with bound states while the continuous spectrum is

connected with free (unbound) states. The representation related to such operators cause difficulties



22 CHAPTER 1. OPERATOR METHODS IN QUANTUM MECHANICS

because eigenstates with continuous spectra are not normalizable to unity. (A rigorous discussion

is too difficult so we will just state the results.)

An observable Â has a continuous spectrum if its eigenvalues {a}

Â|a〉 = a|a〉

are a continuous set of real numbers. The eigenstates {|a〉} can no longer be normalised to unity

but must be normalised to Dirac delta functions:

〈a|a′〉 = δ(a− a′) (1.97)

The resolution of the identity (or closure relation) becomes
∫

da |a〉〈a| = Î (1.98)

and an arbitrary state can |ψ〉 be expanded in terms of the complete set {|a〉} via

|ψ〉 =

∫

da′|a′〉〈a′|ψ〉 (1.99)

with 〈a′|ψ〉 denoting |ψ〉 in the A representation. The inner product for two state vectors |ψ〉 and

|φ〉 is defined as

〈ψ|φ〉 =

∫

da′〈ψ|a′〉〈a′|φ〉

=

∫

ψ∗(a′)φ(a′)da′ (1.100)

If the spectrum is mixed, then the expansion of |ψ〉 is

|ψ〉 =
∑

a′

|a′〉〈a′|ψ〉 +

∫

|a′〉〈a′|ψ〉da′ (1.101)

where the sum is over the discrete eigenvectors and the integral is over the continuous eigenvectors

|a〉.

Position and momentum representations for free particles

In one dimension, the eigenvalue equations for x̂ and p̂ read

x̂|x′〉 = x′|x′〉

p̂|p′〉 = p′|p′〉

〈x|x′〉 = δ(x− x′)

〈p|p′〉 = δ(p− p′) (1.102)
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These definitions, the fundamental commutator

[x̂, p̂] = ih̄ (1.103)

and the above properties of the Dirac delta function can be used to determine the following matrix

elements:

〈x′|p̂|x′′〉 =
h̄

i

∂

∂x′
δ(x′ − x′′)

〈p′|x̂|p′′〉 = − h̄
i

∂

∂p′
δ(p′ − p′′)

〈x′|p̂2|x′′〉 =

(

− ih̄
∂

∂x′

)2

δ(x′ − x′′)

〈p′|x̂2|p′′〉 =

(

ih̄
∂

∂p′

)2

δ(p′ − p′′) (1.104)

Problem 10†1: Verify the formulae (1.104)

Now consider the eigenvalue problem for the momentum operator in the position representation. If

p̂|p′〉 = p′|p′〉

then we have

〈x′|p̂|p′〉 =

∫

dx′′〈x′|p̂|x′′〉〈x′′|p′〉

=

∫

dx′′
(

− ih̄
∂

∂x′
δ(x′ − x′′)

)

〈x′′|p′〉

= −ih̄ ∂

∂x′

∫

dx′′δ(x′ − x′′)〈x′′|p′〉

= −ih̄ ∂

∂x′
〈x′|p′〉 (1.105)

On the other hand, we also have

〈x′|p̂|p′〉 = p′〈x′|p′〉
1Problems that you may choose to skip on a first reading are indicated by †.



24 CHAPTER 1. OPERATOR METHODS IN QUANTUM MECHANICS

Therefore

−ih̄ ∂

∂x′
〈x′|p′〉 = p′〈x′|p′〉 (1.106)

which implies

〈x′|p′〉 =
1√
2πh̄

exp

(

ip′x′

h̄

)

(1.107)

where we have chosen the normalisation such that

〈p′′|p′〉 =

∫

dx′〈p′′|x′〉〈x′|p′〉

=

∫

dx′〈x′|p′′〉∗〈x′|p′〉

=
1

(2πh̄)

∫

dx′ exp

(

i(p′ − p′′)x′

h̄

)

= δ(p′′ − p′) (1.108)

These results can be generalised to three-dimensions. We have

|r〉 = |x, y, z〉

r̂|r〉 = r|r〉

〈r′|r′′〉 = δ(r′ − r′′)

|p〉 = |px, py, pz〉

p̂|p〉 = p|p〉

〈p′|p′′〉 = δ(p′ − p′′)

〈r′|p̂|r′′〉 = −ih̄∇r′δ(r
′ − r′′)

〈p′|r̂|p′′〉 = ih̄∇p′δ(p′ − p′′)

〈r|p〉 =
1

(2πh̄)3/2
exp

(

ir · p/h̄
)

(1.109)



1.2. APPLICATIONS 25

1.2 Applications

We apply the formalism developed in the previous section to some familiar (and not so familiar!)

examples. Foremost is the quantum mechanical treatment of the simple harmonic oscillator (SHO).

The SHO is ubiquitous in the quantum mechanical treatment of real phenomena where one is

considering the vibrations of a system after a small displacement from its equilibrium position.

1.2.1 Harmonic oscillator

The Hamiltonian for a one-dimensional quantum-mechanical oscillator is

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 (1.110)

where x̂ and p̂ are the one-dimensional position and momentum operators: they are linear Hermitian

operators satisfying the canonical commutation relation

[x̂, p̂] = ih̄ (1.111)

Introduce a dimensionless operator

â =
1

(2mh̄ω)
1

2

(ip̂+mωx̂) (1.112)

Then we have

â† =
1

(2mh̄ω)
1

2

(−ip̂+mωx̂) (1.113)

Note that â† 6= â so that â is NOT Hermitian.

Problem 11: Prove the following properties of the operators â and â†:

• [â, â†] = Î

• We define a dimensionless operator N̂ where N̂ = â†â. Show that N̂ is Hermitian and that

it satisfies the following commutation relations: [N̂ , â] = −â and [N̂ , â†] = â†.

The observables x̂, p̂ and Ĥ are given in terms of â, â†, N̂ by

x̂ =

(

h̄

2mω

)
1

2

(â+ â†) (1.114)
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p̂ = i

(

1

2
mh̄ω

)
1

2

(â† − â) (1.115)

Ĥ =

(

ââ† − 1

2

)

h̄ω =

(

â†â+
1

2

)

h̄ω =

(

N̂ +
1

2

)

h̄ω (1.116)

Problem 12: Show that the above expression for Ĥ is correct.

Let |n〉 denote an eigenvector of N̂ (we assume that such an eigenvector exists) with eigenvalue n:

N̂ |n〉 = n|n〉 (1.117)

Then we find from the above expression for Ĥ that

Ĥ|n〉 =

(

N̂ +
1

2

)

h̄ω|n〉

=

(

n+
1

2

)

h̄ω|n〉

This means that |n〉 is an energy eigenvector with eigenvalue

En =

(

n+
1

2

)

h̄ω (1.118)

(Note that you would expect this since from the definition of N̂ and Ĥ above, it is clear that

[Ĥ, N̂ ] = [N̂ , Ĥ] = 0̂ and so are compatible.) All that we know about n is that it must be a real

number (Why?). To determine n, consider the effect of â and â† on |n〉.

Problem 13: Prove the following results:

N̂(â|n〉) = (n− 1)(â|n〉)

N̂(â†|n〉) = (n+ 1)(â†|n〉)

This indicates that â and â† act as lowering and raising operators for the quantum number n:

â|n〉 = α−|n− 1〉 (1.119)

â†|n〉 = α+|n+ 1〉 (1.120)
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where α± are numbers to be determined. For this reason â† and â are often called creation and

annihilation operators, respectively: they create or annihilate one quantum of excitation of the

oscillator (not the oscillator itself!).

Problem 14: Show that for normalised kets |n〉 then α+ = (n+ 1)
1

2 and α− = n
1

2

Therefore we have

â|n〉 = n
1

2 |n− 1〉 (1.121)

â†|n〉 = (n+ 1)
1

2 |n+ 1〉 (1.122)

Problem 15: Prove that the possible values n can take are n = 0, 1, 2, . . . i.e. the non-negative

integers.

The ground state, denoted by the ket |0〉 has energy

E0 =
1

2
h̄ω (1.123)

(i.e. the zero-point energy) and has the property

â|0〉 = 0 (1.124)

All other eigenvectors can be determined from the ground state eigenvector by the repeated appli-

cation of the raising operator â†:

|n〉 =
1

(n!)
1

2

(â†)n|0〉 (1.125)

The kets |n〉 defined above are orthonormal (since non-degenerate eigenvectors of a Hermitian

operator corresponding to different eigenvalues are orthogonal). They are also complete:

∞
∑

n=0

|n〉〈n| = Î (1.126)

The set {|n〉} is a basis for the Hilbert space i.e any state |ψ〉 can be expressed as

|ψ〉 =
∞
∑

n=0

|n〉〈n|ψ〉 (1.127)

Similarly, any operator Â acting on this space can be written

Â =
∞
∑

n=0

∞
∑

n′=0

|n′〉〈n′|Â|n〉〈n| (1.128)
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Wave functions for the harmonic oscillator

First we determine the ground state wave function using the identity

â|0〉 = 0

we have

〈x|â|0〉 = 0

〈x|â
(∫

|x′〉〈x′|dx′
)

|0〉 = 0

∫

dx′
(

〈x|â|x′〉〈x′|0〉
)

= 0

∫

dx′
(

〈x|â|x′〉ψ0(x
′)
)

= 0 (1.129)

where we have defined ψ0(x
′) = 〈x′|0〉. To evaluate 〈x|â|x′〉 we use (1.112):

〈x|â|x′〉 =
1

(2mh̄ω)
1

2

〈x|(ip̂+mωx̂)|x′〉

=
1

(2mh̄ω)
1

2

[

i〈x|p̂|x′〉 +mω〈x|x̂|x′〉
]

(1.130)

Using properties of the operators x̂, p̂ in the position representation :

x̂|x′〉 = x′|x′〉

〈x|x̂|x′〉 = x′〈x|x′〉

= x′δ(x− x′)

〈x|p̂|x′〉 = −ih̄ ∂
∂x
δ(x− x′) (1.131)

we get

〈x|â|x′〉 =
1

(2mh̄ω)
1

2

[

h̄
∂

∂x
δ(x− x′) +mωx′δ(x− x′)

]

(1.132)

Substituting (1.132) into (1.129) we get

∫

dx′
[

h̄
∂

∂x
δ(x− x′) +mωx′δ(x− x′)

]

ψ0(x
′) = 0

(

h̄
∂

∂x
+mωx

)

ψ0(x) = 0 (1.133)
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which has the normalised solution

ψ0(x) =

(

mω

πh̄

)
1

4

exp

(

− mω

2h̄
x2
)

∫ ∞

−∞
|ψ0(x)|2 = 1 (1.134)

To determine the excited state wave functions we proceed as follows: Since

â†|n〉 = (n+ 1)
1

2 |n+ 1〉

we have

〈x|â†|n〉 = (n+ 1)
1

2 〈x|n+ 1〉 (1.135)

Defining ψn(x) = 〈x|n〉, (1.135) becomes

〈x|â†|n〉 =

∫

dx′〈x|â†|x′〉ψn(x′)

= (n+ 1)
1

2ψn+1(x) (1.136)

We then have

〈x|â†|x′〉 =
1

(2mh̄ω)
1

2

〈x|(−ip̂+mωx̂)|x′〉

=
1

(2mh̄ω)
1

2

[

− i〈x|p̂|x′〉 +mω〈x|x̂|x′〉
]

=
1

(2mh̄ω)
1

2

[

− h̄
∂

∂x
δ(x− x′) +mωx′δ(x− x′)

]

(1.137)

and (1.136) reduces to

(

mω

2h̄

)
1

2

(

− h̄

mω

∂

∂x
+ x

)

ψn(x) = (n+ 1)
1

2ψn+1(x) (1.138)

which gives the following recursion formula

ψn+1(x) =
1

(n+ 1)
1

2

(

mω

2h̄

)
1

2

(

− h̄

mω

∂

∂x
+ x

)

ψn(x) (1.139)

Problem 16†: Work out the details leading to the formula (1.139) starting from (1.137).
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Since we already know ψ0(x), (1.139) enables us to generate all the excited wave functions (although

they still have to be normalised). This is a “neater” way of solving for the eigenstates of the quantum

harmonic oscillator when compared with the power series method you have come across before. In

fact, this is an example of the so called factorisation method, a very powerful method for solving

second-order differential equations by purely algebraic means. (We will come across this technique

again when we determine the eigenfunctions of the orbital angular momentum operator.)

The theory outlined in the above paragraph provides a complete description of the quantum-

mechanical properties of a one-dimensional harmonic oscillator. For example, matrix elements of

certain functions of the position and momentum operators can easily be evaluated.

Problem 17†: Prove the following results:

•
〈n′|x̂|n〉 =

(

h̄

2mω

)
1

2

[

n
1

2 δn′,n−1 + (n+ 1)
1

2 δn′,n+1

]

(1.140)

•
〈n′|p̂|n〉 = i

(

1

2
mh̄ω

)
1

2

[

− n
1

2 δn′,n−1 + (n+ 1)
1

2 δn′,n+1

]

(1.141)

•

〈n′|x̂2|n〉 =
h̄

2mω

{[

n(n− 1)

]
1

2

δn′,n−2 + (2n+ 1)δn,n′ +

[

(n+ 1)(n+ 2)

]
1

2

δn′,n+2

}

(1.142)

•

〈n′|p̂2|n〉 =
1

2
mh̄ω

{

−
[

n(n− 1)

]
1

2

δn′,n−2 +(2n+1)δn,n′ −
[

(n+1)(n+2)

]
1

2

δn′,n+2

}

(1.143)

Problem 18:

• Show that if f(â†) is any polynomial in â†, then

âf(â†)|0〉 =
df(â†)
dâ†

|0〉 (1.144)

• Show that:

eλâf(â†)|0〉 = f(â† + λ)|0〉 (1.145)
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• Show that:

eλâf(â†)e−λâ = f(â† + λ) (1.146)

• Use the preceding relation to prove that

eαâ+βâ†

= eαâeβâ†

e−
1

2
αβ (1.147)

• Show that:

eλâ†

f(â)e−λâ†

= f(â− λ) (1.148)

From this, show that

eαâ+βâ†

= eβâ†

eαâe
1

2
αβ (1.149)

• A state |α〉 that obeys the equation

â|α〉 = α|α〉 (1.150)

is called a coherent state. Show that the state |α〉 may be written as

|α〉 = Ceαâ† |0〉 (1.151)

and determine the value of C. By expanding the state |α〉 in the basis {|n〉} find the probability

that a coherent state contains n quanta. This probability distribution is called a Poisson

distribution. Finally calculate the value of 〈α|N̂ |α〉 which corresponds to the average number

of quanta in the coherent state. (This example is relevant in quantum optics.)

1.2.2 Delta-function potential well

As an example of a system with a mixed (discrete-continuous) spectrum, consider a finite potential

well of width a and depth V0:

V (x) = −V0 for |x| < 1
2a

V (x) = 0 elsewhere (1.152)

In the limit that the well becomes very deep and narrow, such that V0 → ∞ and a → 0 while

aV0 ≡ V remains fixed, we may approximate the potential by a Dirac delta function:

V (x) = −V δ(x) (1.153)

(This will also give us some practice at handling the delta function.)
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Negative-energy eigenstates of this system correspond to bound states, which will be normalisable

and have a discrete spectrum. The wave function must fall off exponentially outside the well and

hence must take the form

ψ(x) = Ae−κ|x| (1.154)

where

κ =

√
−2mE

h̄
(1.155)

and (for normalisation) A =
√
κ. Integrating the Schrödinger equation

Eψ = − h̄2

2m

∂2ψ

∂x2
− V δ(x)ψ (1.156)

between the limits x = −ε and x = +ε gives

E

∫ +ε

−ε
ψ dx = − h̄2

2m

[

(

∂ψ

∂x

)

x=+ε
−
(

∂ψ

∂x

)

x=−ε

]

− Vψ(0) (1.157)

Now taking the limit ε → 0 will make the integral on the left-hand side vanish, since ψ must be

finite and continuous at x = 0. Therefore ψ must have a discontinuity in its derivative at the origin,

such that

lim
ε→0

[

(

∂ψ

∂x

)

x=+ε
−
(

∂ψ

∂x

)

x=−ε

]

= −2mV
h̄2 ψ(0) (1.158)

Inserting the form (1.154) for the solution, we find that

κ =
mV
h̄2 (1.159)

and hence

E = −1

2
m

(V
h̄

)2

(1.160)

Thus for E < 0 there is a unique solution for E, and hence a single bound state.

For E > 0, on the other hand, we can obtain plane-wave solutions with wave number k =
√

2mE/h̄

for any value of E. Since the potential is an even function of x, we can classify the eigenstates

according to parity. Those with odd parity must vanish at the origin and then equation (1.158)

tells us there is no change in the derivative at the origin, just as if the potential well were not there.

Thus the odd-parity eigenfunctions are simply of the form

ψ(x) = C sin kx (1.161)

and any odd-parity wave function of the system can be Fourier decomposed into sine waves, just

as for a free particle. For the usual delta function normalisation 〈k|k′〉 = δ(k − k′), we require

C = 1/
√
π.
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The even-parity eigenstates, on the other hand, need not vanish at the origin, and hence they feel

the presence of the potential well. For E > 0 we can write them in the general form

ψ(x) = C cos(k|x| + φ) (1.162)

where, from equation (1.158), the phase shift φ satisfies the equation

tanφ =
mV
h̄2k

=
κ

k
(1.163)

The presence of the phase shift guarantees that the positive-energy even-parity eigenstates (1.162)

are orthogonal to the bound state (1.154). To see this, consider the overlap integral
∫ ∞

−∞
cos(k|x| + φ)e−κ|x|dx = 2

∫ ∞

0
cos(kx+ φ)e−κxdx

=

∫ ∞

0

(

eikx+iφ−κx + e−ikx−iφ−κx
)

dx

=
eiφ

κ− ik
+

e−iφ

κ+ ik

=
2

κ2 + k2
(κ cosφ− k sinφ)

= 0 (1.164)

on account of equation (1.163). Hence any unbound state of the system can be Fourier decomposed

into sine waves and the “kinked cosine” waves (1.162). Conversely, the square modulus of the

overlap between any normalised state and the bound state (1.154) gives the probability that the

particle is bound in the potential well.

Problem 19: Find the probability Pb that a particle with wave function

ψ(x) =
√
c e−c|x| (1.165)

will be found in the bound state of the delta-function potential well. Confirm that Pb ≤ 1. Find also

the probability P (k)dk that the particle will be found to be unbound, with wave number between

k and k + dk.

Answer:

Pb =
4cκ

(c+ κ)2
, P (k) =

4ck2(c− κ)2

π(κ2 + k2)(c2 + k2)2

Problem 20†: Confirm that
∫ ∞

0
P (k) dk = 1 − Pb (1.166)
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1.3 Introduction to second quantisation

Historically, the development of quantum mechanics focused on the physics of entities which in the

classical limit are particles. To these particles was attributed a wave nature (with Schrödinger’s

equation being the wave equation), which shows up in experiments like electron diffraction for

example. This approach may be called first quantisation. This wave-particle duality forms the

foundation on which quantum mechanics was built. Similarly, it is only natural to expect that

waves in classical physics such as electromagnetic radiation could have particle-like attributes,

a conjecture spectacularly confirmed by the Compton effect and Einstein’s explanation of the

photoelectric effect. In the case of the electromagnetic field, it is appropriate to define it not in

terms of its field amplitudes (E or B) but by how many “photons” or radiation quanta are present

in a given mode, and this is especially important when one tries to understand the interaction

of EM radiation with matter, where the number of photons can vary. The procedure whereby

one constructs a particle description of classical waves is known as second quantisation. Note

however that this procedure is not limited to classical waves. It can be applied to the Schrödinger

equation (a wave equation for the probability amplitude of an electron for example). In the second

quantisation procedure, wave fields are “quantised” to describe the problem in terms of “quanta”

in a given mode of vibration. Examples include photons (quanta of EM field), phonons (quanta of

vibrations in solids), plasmons (quanta of collective electron vibrations) etc. The physical states

of this system are characterised by particle occupation numbers, i.e. the number of quanta in a

particular mode. Below, we will use the vibrations of a stretched string (covered in IB Physics!) to

bring out the essence of the second quantisation approach.

1.3.1 Vibrating string

We first review the classical treatment of the vibrating string. Consider a stretched string of uniform

linear density ρ and length L with fixed ends. The transverse displacement as a function of distance

x along the string is denoted by y(x, t). The equation of the vibrating string is given by

∂2y

∂t2
= v2 ∂

2y

∂x2
(1.167)

with the boundary conditions y(0, t) = y(L, t) = 0 for all t. Note that v =
√

τ
ρ where τ denotes the

tension in the string. We now use the method of separation of variables to solve equation (1.167)

subject to the stated boundary conditions. Let

y(x, t) = X(x) ψ(t) (1.168)
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Substituting this into (1.167) and dividing throughout by X(x)ψ(t) gives

v2 1

X

d2X

dx2
=

1

ψ

d2ψ

dt2
(1.169)

As the left-hand side depends only x and the right-hand side depends only on t, each must be a

constant: let it be −k2. We then have the ordinary differential equations

d2X

dx2
+ k2X = 0

d2ψ

dt2
+ v2k2ψ = 0 (1.170)

whose boundary conditions become X(0) = X(L) = 0 and corresponding solutions are respectively

X(x) = c1 cos(kx) + c2 sin(kx)

ψ(t) = b1 cos(vkt) + b2 sin(vkt) (1.171)

Inserting the boundary condition gives

c1 = 0, c2 sin(kL) = 0

As c1 and c2 cannot both be zero (otherwise y(x, t) would be identically zero), we have to choose

sin(kL) = 0 or

kL = nπ, n = 1, 2, 3 · · ·

Thus the allowed general solutions are

y(x, t) =
∞
∑

n=1

ψn(t) sin

(

nπx

L

)

ψn(t) =

[

An cos

(

nπvt

L

)

+Bn sin

(

nπvt

L

)]

. (1.172)

(We have replaced the integration constants b1c2 by An etc.) Each term in the above general

solution is an allowed solution corresponding to an allowed mode of vibration. The Fourier expansion

coefficients ψn(t) are called the normal coordinates and for an arbitrary y(x, t) can be determined

by

ψn(t) =
2

L

∫ L

0
y(x, t) sin

(

nπx

L

)

dx (1.173)

A knowledge of all the normal coordinates completely determines y(x, t). Equation (1.172) rep-

resents the superposition of independent modes of vibration i.e. the normal modes, each with its

characteristic frequency given by ωn = nπv/L. An important property of normal coordinates is
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that the kinetic and potential energies are expressible as uncoupled sums of the normal coordinates

and their first derivatives. In the case of the kinetic energy, we have

T =

∫ L

0

1

2
ρ

(

∂y

∂t

)2

dx

∂y

∂t
=

∞
∑

n=1

ψ̇n sin

(

nπx

L

)

(1.174)

which implies

T =
1

2
ρ

∫ L

0

∞
∑

n=1

∞
∑

m=1

ψ̇n ψ̇m sin

(

nπx

L

)

sin

(

mπx

L

)

dx

=
∞
∑

n=1

1

4
ρL ψ̇2

n. (1.175)

Similarly, for the potential energy, we have

V =

∫ L

0

1

2
τ

(

∂y

∂x

)2

dx

=
∞
∑

n=1

1

4

τ

L
n2π2ψ2

n (1.176)

To derive the equation of motion for the normal coordinates, we construct the Lagrangian L where

L = T − V =
∞
∑

n=1

[

1

4
ρLψ̇2

n − 1

4

τ

L
n2π2ψ2

n

]

(1.177)

and using Lagrange’s equation
∂

∂t

(

∂L
∂ψ̇n

)

− ∂L
∂ψn

= 0 (1.178)

we get

ψ̈n +
n2π2τ

L2ρ
ψn = 0 (1.179)

This is just the equation for a simple harmonic oscillator!

We can equally well describe the vibrating string problem in the Hamiltonian formalism. Recall

that the generalised momentum corresponding to the generalised coordinate ψn is defined by

Πn =
∂L
∂ψ̇n

=
1

2
ρLψ̇n (1.180)

The Hamiltonian function, H (where H(p, q) =
∑

pq − L) is given by

H =
∞
∑

n=1

Πn ψ̇n − L

=
∞
∑

n=1

[

Π2
n

ρL
+
n2π2τ

4L
ψ2

n

]

(1.181)
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which is an infinite sum of harmonic oscillator Hamiltonian functions. The above equation serves

as the starting point for quantizing the vibrations of the string.

1.3.2 Quantisation of vibrating string

To quantize a system, we make the transition from dynamical variables to operators. Define the

quantum mechanical Hamiltonian operator by making the replacement

Πn → −ih̄ ∂

∂ψn
(1.182)

Equation (1.181) then becomes

Ĥ =
∞
∑

n=1

[

− h̄2

ρL

∂2

∂ψ2
n

+
τ

4L
n2π2ψ2

n

]

=
∞
∑

n=1

Ĥn (1.183)

i.e. the Hamiltonian reduces to a sum of terms, each of which is dependent on a single variable

(ψn). Therefore the total wave function for this system is given by

Ψ(ψn, t) =
∞
∏

n=1

ΦNn(ψn, t) (1.184)

where ΦNn are the eigenfunctions of the SHO problem satisfying
[

− h̄2

ρL

∂2

∂ψ2
n

+
τ

4L
n2π2ψ2

n

]

ΦNn(ψn, t) = ih̄
∂

∂t
ΦNn(ψn, t) (1.185)

The solutions of the above equation have the generic form

ΦNn(ψn, t) = UNn(ψn) e−iEn(Nn)t/h̄ (1.186)

where the UNn satisfy

− h̄2

ρL

d2UNn

dψ2
n

+
τ

4L
n2π2ψ2

n UNn = E(Nn)UNn (1.187)

This is just the differential equation for the SHO with the following correspondence

“mass” m → 1

2
ρL

“force constant” k → τ

2L
n2π2

“frequency” ωn =

√

k

m
=

nπ

L

√

τ

ρ
(1.188)
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The solutions UNn are the Hermite polynomials discussed earlier in the chapter. So we can draw

the following conclusions:

• The energy in any given normal mode of frequency ωn is

En(Nn) =

(

Nn +
1

2

)

h̄ωn

=

(

Nn +
1

2

)

nπh̄

L

√

τ

ρ
(1.189)

The number Nn = 0, 1, 2, . . . is the occupation number of the mode.

• We can define annihilation and creation operators for each mode as before:

ân =
1

(ρLh̄ωn)
1

2

(

1

2
ρLωnψ̂n + iΠ̂n

)

â†n =
1

(ρLh̄ωn)
1

2

(

1

2
ρLωnψ̂n − iΠ̂n

)

ψ̂n =

(

h̄

ρLωn

)
1

2
(

ân + â†n
)

Π̂n =
1

2
i (ρLh̄ωn)

1

2

(

â†n − ân

)

(1.190)

so that the number operator that counts the number of quanta in a particular mode is given

by

N̂n = â†nân (1.191)

• The state |Nn〉 indicates that the system has Nn quanta of excitation of the n-th mode, each

with energy h̄ωn. The effect of the creation and annihilation operators on a state |Nn〉 is:

â†n|Nn〉 =
√

(Nn + 1)|Nn + 1〉

ân|Nn〉 =
√

Nn|Nn − 1〉 (1.192)

• In each mode, the lowest energy state does not have zero energy but has energy 1
2 h̄ωn. This

represents the “vacuum” or ground state of the mode.

1.3.3 General second quantisation procedure

The procedure for quantising the vibrating string described in the previous section can in principle

be applied to any wave equation. The end result is that one is able to “second-quantise” the wave or



1.3. INTRODUCTION TO SECOND QUANTISATION 39

field amplitude. Instead of describing the allowed modes in terms of the amplitude, we now describe

them by the “quanta” or “particle” number in the mode. This procedure can be summarised as

follows:

1. Given a field or wave equation, represent it in normal coordinates.

2. Find the Lagrangian and Hamiltonian functions corresponding to the field equations with

appropriately defined generalised coordinates and momenta.

3. Treat the normal coordinate Hamiltonian obtained above as a quantum mechanical harmonic

oscillator so that

• States are defined by the number of quanta (particles) in each allowed mode

• Creation and annihilation operators as in the SHO case allow particles/quanta to be

added to or removed from the physical state

• A vacuum state with a fixed energy represents the lowest energy state.

We will extend the concept of second quantisation to interacting many-particle systems, in the

process second-quantising the Schrödinger equation, in Chapter 5. We will see that the second

quantisation procedure makes the treatment of interacting many-particle systems more manageable.
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Chapter 2

Angular Momentum

2.1 Introduction

As in classical mechanics, the angular momentum (AM) of an isolated quantum mechanical system

is conserved, and this provides a useful general classification of the states of the system in terms

of their angular momenta. However, the mathematics of AM is a good deal more complicated in

QM, because the values of the AM are quantised and because its different components are not

compatible observables.

The conservation of AM is a consequence of the fact that the properties of an isolated physical

system are invariant under rotations of the system in space (or equivalently, under reorientation

of a Cartesian coordinate system used to describe the system). This is an example of a general

connection between invariances and conservation laws, which exists in classical mechanics but is

especially clear in QM.

In the following sections we develop the mathematical treatment of AM and explain its connection

with rotational invariance.

2.2 Orbital angular momentum

In classical mechanics, the AM of a particle (with respect to the origin) is given by the formula:

L = r × p (2.1)

41
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so that,

Lx = ypz − zpy (2.2)

Ly = zpx − xpz (2.3)

Lz = xpy − ypx (2.4)

where r = (x, y, z) and p = (px, py, pz) are the position and linear momentum vectors, respectively.

The mathematics of AM comes about through the quantum rule of replacing the linear momentum

p of a classical point particle, located at point r, by p̂ = −ih̄∇, thus replacing the classical angular

momentum of a point particle (about the origin of some chosen Cartesian coordinate system) by

the AM operator:

L̂ = −ih̄r ×∇ (2.5)

This implies:

L̂x = yp̂z − zp̂y

=
h̄

i

(

y
∂

∂z
− z

∂

∂y

)

L̂y = zp̂x − xp̂z

=
h̄

i

(

z
∂

∂x
− x

∂

∂z

)

L̂z = xp̂y − yp̂x

=
h̄

i

(

x
∂

∂y
− y

∂

∂x

)

(2.6)

Equation (2.6) can be written more compactly as

L̂i = εijkr̂j p̂k

i, j, k = 1, 2, 3 (2.7)

where 1 → x−component, 2 → y−component, 3 → z−component and we have used the Einstein

summation convention (i.e. the expression is summed over repeated indices). εijk is the completely

antisymmetric tensor of the third rank (also called the Levi-Civita tensor)

εijk =



















+1 for even permutations of (123)

−1 for odd permutations of (123)

0 otherwise
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Some useful identities that the εijk satisfy are

εijk εabc =

∣

∣

∣

∣

∣

∣

∣

∣

∣

δia δib δic

δja δjb δjc

δka δkb δkc

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.8)

The antisymmetric nature of the εijk means that

εijk = −εjik = −εkji

The product of two of these tensors, when summed over a pair of indices (i.e. the indices are

contracted), has the following useful properties

εijk εibc = δjbδkc − δkbδjc (2.9)

εijk εijc = 2δkc (2.10)

εijk εijk = 6 (2.11)

which can be proved by expanding out the terms. We will use these results later to prove some

AM operator identities, but familiarity with them will be useful in your future study of special and

general relativity, classical and quantum electrodynamics, and quantum field theory.

The quantal AM properties of a simple one-particle system are then to be inferred from the prop-

erties of these operators and their actions in the associated Hilbert space. In later sections, we

will deduce the eigenvalues and eigenfunctions of these operators. The components of the quantum

mechanical AM operator satisfy the following commutation relations:

[L̂x, L̂y] = ih̄L̂z

[L̂y, L̂z] = ih̄L̂x

[L̂z, L̂x] = ih̄L̂y (2.12)

or

[L̂i, L̂j ] = ih̄εijkL̂k (2.13)

Further identities include

[L̂i, r̂j ] = ih̄εijkr̂k (2.14)

[L̂i, p̂j ] = ih̄εijkp̂k (2.15)
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Problem 1: Verify (2.13)-(2.15) by direct calculation.

Partial solution: Here is the proof for (2.13):

[L̂i, L̂j ] = εiαβεjµν [r̂αp̂β , r̂µp̂ν ] (2.16)

We use the following operator identity to expand out the right hand side of (2.16)

[ÂB̂, ĈD̂] = Â[B̂, ĈD̂] + [Â, ĈD̂]B̂

= Â

(

[B̂, Ĉ]D̂ + Ĉ[B̂, D̂]

)

+

(

[Â, Ĉ]D̂ + Ĉ[Â, D̂]

)

B̂

= Â[B̂, Ĉ]D̂ + ÂĈ[B̂, D̂] + [Â, Ĉ]D̂B̂ + Ĉ[Â, D̂]B̂ (2.17)

Making the substitutions

Â → r̂α

B̂ → p̂β

Ĉ → r̂µ

D̂ → p̂ν (2.18)

into (2.17) we have

[L̂i, L̂j ] = εiαβεjµν [r̂αp̂β , r̂µp̂ν ]

= εiαβεjµν

{

r̂α[p̂β, r̂µ]p̂ν + r̂αr̂µ[p̂β, p̂ν ] + [r̂α, r̂µ]p̂ν p̂β + r̂µ[r̂α, p̂ν ]p̂β

}

(2.19)

We now make use of the following operator identities

[r̂i, r̂j ] = 0 (2.20)

[p̂i, p̂j ] = 0 (2.21)

[r̂i, p̂j ] = ih̄δij (2.22)

so that (2.16) reduces to

[L̂i, L̂j ] = εiαβεjµν

{

− ih̄r̂αp̂νδβµ + ih̄r̂µp̂βδαν

}

= −ih̄εiαµεjµν r̂αp̂ν + ih̄εiνβεjµν r̂µp̂β (2.23)
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Since εjµν = −εjνµ etc. we find that

εiαµεjµν = −εiαµεjνµ

= δiνδαj − δijδαν

εiνβεjµν = δiµδβj − δijδβν (2.24)

Substituting (2.19) into (2.18) we have

[L̂i, L̂j ] = −ih̄
[

δiνδαj − δijδαν

]

r̂αp̂ν + ih̄

[

δiµδβj − δijδβν

]

r̂µp̂β

= −ih̄
[

δiνδαj − δijδαν

]

r̂αp̂ν + ih̄

[

δiαδνj − δijδνα

]

r̂αp̂ν (2.25)

Note that in the last term of the above equation we have relabelled the indices µ → α and β →
ν since these are dummy indices (remember, due to the summation convention, summing over

repeated indices α is the same as summing over repeated indices ν). Equation (2.20) reduces to

[L̂i, L̂j ] = ih̄

[

δiαδνj − δiνδαj

]

r̂αp̂ν

= ih̄εkijεkαν r̂αp̂ν (2.26)

Since εkij = −εikj = εijk and L̂k = εkαν r̂αp̂ν we finally have the result we want to prove i.e.

[L̂i, L̂j ] = ih̄εijkL̂k (2.27)

Actually we have done the hardest part. The proof for the other identities is much easier!

From these fundamental commutation relations, the entire theory of AM can be deduced. Evidently

L̂x, L̂y, L̂z are incompatible observables so it will be futile to look for states that are simultaneous

eigenfunctions of L̂x and L̂y. From the generalised uncertainty principle we deduce that:

∆Lx∆Ly ≥ h̄

2
|〈L̂z〉| (2.28)

On the other hand, the square of the total angular momentum, L̂2,

L̂2 ≡ L̂2
x + L̂2

y + L̂2
z (2.29)

does commute with L̂x, L̂y and L̂z.
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Problem 2: Show that:

[L̂2, L̂x] = 0 (2.30)

[L̂2, L̂y] = 0 (2.31)

[L̂2, L̂z] = 0 (2.32)

or more compactly,

[L̂2, L̂] = 0 (2.33)

Problem 3:

• Show that L̂2 = r̂2p̂2 − (r̂ · p̂)2 + ih̄(r̂ · p̂)

Solution: We use the tensor method.

L̂2 = εijkr̂j p̂kεiαβ r̂αp̂β

= (δjαδkβ − δkαδjβ)r̂j p̂kr̂αp̂β

= r̂αp̂β r̂αp̂β − r̂β p̂αr̂αp̂β

= r̂αr̂αp̂β p̂β − ih̄δαβ r̂αp̂β − r̂β(r̂αp̂α − 3ih̄Î)p̂β

= (r̂ · r̂)(p̂ · p̂) − ih̄(r̂ · p̂) − r̂β r̂αp̂αp̂β + 3ih̄(r̂ · p̂)

= (r̂ · r̂)(p̂ · p̂) − ih̄(r̂ · p̂) − r̂β r̂αp̂β p̂α + 3ih̄(r̂ · p̂) (2.34)

Using

r̂β r̂αp̂β p̂α = r̂β(p̂β r̂α + ih̄δαβ)p̂α

= r̂β p̂β r̂αp̂α + ih̄r̂αp̂α

= (r̂ · p̂)(r̂ · p̂) + ih̄(r̂ · p̂) (2.35)

Putting this into the above equation, we get the desired result. Note that we have used

εijkεiαβ = δjαδkβ − δkαδjβ

p̂αr̂α = r̂αp̂α − 3ih̄

p̂kr̂j = r̂j p̂k − ih̄δjk (2.36)
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• Show that [L̂2, r̂] = −2ih̄L̂ × r̂ − 2h̄2r̂

• Show that [L̂2, p̂] = −2ih̄L̂ × p̂ − 2h̄2p̂

Problem 4:

• Evaluate the commutators [L̂z, r
2] and [L̂z, p

2].

Answer: [L̂z, r
2] = 0, [L̂z, p

2] = 0

• Show that the Hamiltonian Ĥ = (p2/2m) + V commutes with all three components of L̂,

provided that V depends only on r. (Thus Ĥ, L̂2, and L̂z form a CSCO.)

2.2.1 Eigenvalues of orbital angular momentum

The results of the previous section imply that L̂2 is compatible with each component of L̂ and so

it is possible to find simultaneous eigenstates of L̂2 and L̂z for example (although note that there

is nothing special about the choosing the z-component. We could just as well have chosen the x or

y component). We then have:

L̂2Y (x, y, z) = λY (x, y, z) (2.37)

and

L̂zY (x, y, z) = µY (x, y, z) (2.38)

where Y (x, y, z) is an eigenfunction of both L̂2 and L̂z.

To determine the eigenvalues, we use the “ladder operator” technique, similar to the one used to

study the harmonic oscillator. We define:

L̂± ≡ L̂x ± iL̂y (2.39)

which satisfy the following commutation relation

[L̂z, L̂±] = ±h̄L̂± (2.40)

and

[L̂2, L̂±] = 0 (2.41)
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From the result above, we have

L̂2(L̂±Y ) = L̂±(L̂2Y )

= L̂±(λY )

= λ(L̂±Y ) (2.42)

So if Y is an eigenfunction of L̂2 then so is L̂±Y , with the same eigenvalue of L̂2. Now consider

the following:

L̂z(L̂±Y ) = (L̂zL̂± − L̂±L̂z)Y + L̂±L̂zY

= ±h̄L̂±Y + L̂±(µY )

= (µ± h̄)(L̂±Y ) (2.43)

This means that (L̂±Y ) is also an eigenfunction of L̂z, but with a different eigenvalue, µ ± h̄. L̂+

is called a “raising” operator because it increases the value of L̂z by h̄, whereas L̂− is called a

“lowering ” operator since it decreases the eigenvalue of L̂z by h̄. Therefore starting from a given

value of λ one obtains a “ladder” of states with each “rung” separated from its neighbours by one

unit of h̄ in the eigenvalue of L̂z. Then to go up the ladder, one applies L̂+ while to go down, L̂−.

This process cannot go on forever though: Eventually we are going to reach a state for which the

z-component of its AM exceeds the total AM of that state and this cannot be!

Problem 5: Prove that if Y is simultaneously an eigenfunction of L̂2 and L̂z then the square of

the eigenvalue of L̂z cannot exceed the eigenvalue of L̂2. (Hint: Examine the expectation value of

L̂2).

The above problem indicates that there must exist a “top rung”, Ytop, such that

L̂+Ytop = 0 (2.44)

Let the eigenvalue of L̂z for this “top” state to be h̄l. Then we have

L̂zYtop = h̄lYtop

L̂2Ytop = λYtop (2.45)
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Problem 6: Prove that

L̂2 = L̂±L̂∓ + L̂2
z ∓ h̄L̂z (2.46)

Using the above result it follows that

L̂2Ytop = (L̂−L̂+ + L̂2
z + h̄L̂z)Ytop

= (0 + h̄2l2 + h̄2l)Ytop

= h̄2l(l + 1)Ytop (2.47)

and hence

λ = h̄2l(l + 1) (2.48)

which tells us the eigenvalue of L̂2 in terms of the maximum eigenvalue of L̂z. Following the same

reasoning, there is also a “bottom” rung, Ybottom, such that

L̂−Ybottom = 0 (2.49)

with h̄l̄ the eigenvalue of L̂z. Following the same method above, we deduce that

λ = h̄2 l̄(l̄ − 1) (2.50)

Problem 7: Verify (2.50). Hence deduce that the only possible value of l̄ is

l̄ = −l (2.51)

Evidently the eigenvalues of L̂z are mh̄, where m is an integer going from +l to −l in N integer

steps. This implies that l = N
2 so that l must be an integer or half-integer. The eigenfunctions of

L̂2 and L̂z are characterised by the numbers l and m, where:

L̂2Yl,m = h̄2l(l + 1)Yl,m

l = 0,
1

2
, 1,

3

2
, · · · (2.52)
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L̂zYl,m = h̄mYl,m

m = −l,−l + 1, . . . , l − 1, l (2.53)

Note that for a given value of l, there are 2l + 1 different values for m.

Problem 8: The raising and lowering operators change the value of m by one unit, i.e.

L̂±Yl,m = A±
l,mYl,m±1 (2.54)

What is the value of A±
l,m, if the eigenfunctions Yl,m are to be normalised?

Answer: A±
l,m can take the values:

A±
l,m = h̄

√

l(l + 1) −m(m± 1)

= h̄
√

(l ∓m)(l ±m+ 1) (2.55)

This result will be of use later when we study the addition of two angular momenta.

2.2.2 Eigenfunctions of orbital angular momentum

We now determine the eigenfunctions for the operators L̂2 and L̂z. The conventional way is to

write out these operators in spherical polar coordinates:

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ (2.56)

from which we can derive:

∂

∂x
= sin θ cosϕ

∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ

∂

∂y
= sin θ sinϕ

∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
+

cosϕ

r sin θ

∂

∂ϕ

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(2.57)
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Then the L̂z operator in spherical polar coordinates is:

L̂z = −ih̄ ∂

∂ϕ
(2.58)

while the raising/lowering operators are:

L̂± = h̄e±iϕ(± ∂

∂θ
+ i cot θ

∂

∂ϕ
) (2.59)

Problem 9: Verify this. From these results determine the value of L̂2 in spherical polar coordinates.

(Hint: You could use the result proven earlier, i.e. L̂2 = L̂+L̂− + L̂2
z − h̄L̂z).

Since we have already shown that Ylm(θ, ϕ) is a simultaneous eigenfunction of L̂z and L̂2, from

the above results it is clear that the easiest way to determine Ylm(θ, ϕ) is by using the method of

separation of variables:

Ylm(θ, ϕ) = Θlm(θ)Φm(ϕ) (2.60)

so that

L̂zYlm(θ, ϕ) = mh̄Ylm(θ, ϕ) (2.61)

implies
dΦm(ϕ)

dϕ
= imΦm(ϕ) (2.62)

which is a first-order differential equation in ϕ. The normalised solutions are:

Φm(ϕ) =
1

√

(2π)
eimϕ

∫ 2π

0
dϕ |Φm|2 = 1 (2.63)

Therefore

Ylm(θ, ϕ) = Θlm(θ)eimϕ (2.64)

To solve for Θlm(θ) we proceed as follows. We use the fact that the maximum value of m is l such

that:

L̂+Yll = 0 (2.65)

Expanding this out gives the equation

h̄eiϕ
(

∂

∂θ
+ i cot θ

∂

∂ϕ

)

Θlle
ilϕ = h̄ei(l+1)ϕ

(

∂

∂θ
− l cot θ

)

Θll(θ) = 0 (2.66)
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whose solution is

Θll(θ) = (sin θ)l (2.67)

Starting from this, we can determine all the other states by applying the lowering operator. This

means that an arbitrary state can be represented by:

Ylm(θ, ϕ) = CL̂l−m
− (sin θ)leilϕ (2.68)

where C is a constant.

Problem 10: We investigate the action of L̂− on the “top” state. First verify the following

identity:
(

∂

∂θ
+ l cot θ

)

f(θ) =
1

(sin θ)l

d

dθ

[

(sin θ)lf(θ)

]

(2.69)

Then show that by acting on Yll with L̂− we get:

Yl,l−1 = C ′ e
i(l−1)ϕ

(sin θ)l

(

− d

dθ

)[

(sin θ)l(sin θ)l
]

Yl,l−2 = C ′′ ei(l−2)ϕ

(sin θ)(l−1)

d

dθ

[

1

sin θ

d

dθ
(sin θ)2l

]

(2.70)

where C ′, C ′′ are constants.

If we define a new variable u = cos θ such that − 1
sin θ

d
dθ = d

du then the general form for Ylm(θ, ϕ) is

Ylm(θ, ϕ) = C
eimϕ

(sin θ)m

(

d

du

)l−m

[(1 − u2)l] (2.71)

These eigenfunctions (the spherical harmonics) are to be normalised over the unit sphere where

the range of integration is 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π. This means

∫

dΩ |Ylm(θ, ϕ)|2 =

∫ 2π

0
dϕ

∫ π

0
dθ sin θ |Ylm(θ, ϕ)|2

=

∫ 2π

0
dϕ

∫ 1

−1
du |Ylm(θ, ϕ)|2

= 1 (2.72)
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2.2.3 Mathematical interlude: Legendre polynomials and spherical harmonics

Legendre polynomials

The Legendre polynomials Pl(u) arise when we solve Laplace’s equation in spherical polar coordi-

nates for a problem possessing azimuthal symmetry. They are real functions (polynomials of order

l) defined in the interval [−1,+1] and have the following properties:

The generating function is
1

(1 − 2hu+ h2)
1

2

=
∞
∑

l=0

Pl(u)h
l (2.73)

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l (2.74)

where −1 ≤ u ≤ 1, and l is a non-negative integer. The Pl(u) arise from a power-series solution of

the 2nd order differential equation, the Legendre equation:

(1 − u2)P
′′

l (u) − 2uP
′

l (u) + l(l + 1)Pl(u) = 0 (2.75)

and satisfy the following recurrence relations

(l + 1)Pl+1(u) = (2l + 1)uPl(u) − lPl−1(u)

(1 − u2)P
′

l (u) = −luPl(u) + lPl−1(u) (2.76)

They are normalised as follows:
∫ 1

−1
Pl(u)Pm(u)du =

2

2l + 1
δlm (2.77)

The first few polynomials are

P0(u) = 1

P1(u) = u

P2(u) =
1

2
(3u2 − 1)

P3(u) =
1

2
(5u3 − 3u) (2.78)

Note that

Pl(u) = (−1)lPl(−u)

Pl(1) = 1 (2.79)
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Spherical harmonics

The spherical harmonics, Ylm(θ, ϕ), that are conventionally used are:

Ylm(θ, ϕ) = (−1)m
[

2l + 1

4π

(l −m)!

(l +m)!

] 1

2

Pm
l (cos θ)eimϕ (2.80)

which is valid form ≥ 0, while the eigenfunctions corresponding to negative values ofm are obtained

from:

Yl,−m = (−1)mY ∗
lm (2.81)

The functions Pm
l are the associated Legendre polynomials defined by:

Pm
l (u) = (−1)l+m (l +m)!

(l −m)!

(1 − u2)−m/2

2ll!

(

d

du

)l−m

(1 − u2)l (2.82)

which is valid for m ≥ 0, and the values for negative m given by:

P−m
l (u) = (−1)m (l −m)!

(l +m)!
Pm

l (u) (2.83)

(Remember u = cos θ).

Problem 11†: From the above definitions of Ylm(θ, ϕ) and Pm
l (cos θ), determine the values of

Y00, Y10, Y11, Y20, Y21, Y22. Write out the quantities x, y, z, xy, yz, zx, x2 − y2, 2z2 − x2 − y2, y2 − z2

in terms of the above Ylm(θ, ϕ) (and their complex conjugates). (For example, z = r
√

4π
3 Y1,0 where

r2 = x2 + y2 + z2.) Hence show that x
r is an eigenfunction of L̂x and y

r is an eigenfunction of L̂y,

and find their respective eigenvalues.

When m = 0, (2.80) simplifies to a value independent of the azimuthal angle ϕ

Yl0(θ, ϕ) → Yl0(θ, 0) =

√

2l + 1

4π
Pl(cos θ) (2.84)

where Pl(cos θ) are the Legendre polynomials.

At the poles θ = 0 and θ = π the azimuthal angle ϕ are indistinguishable so Ylm(θ, ϕ) cannot

depend on ϕ at these angles. Therefore the only non-zero spherical harmonics for these two cases

has to have m = 0 i.e.

Ylm(0, ϕ) =

√

2l + 1

4π
δm0 (2.85)

and

Ylm(π, ϕ) = (−1)l

√

2l + 1

4π
δm0 (2.86)
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Consider two arbitrary directions in space defined respectively by the angles (θ, ϕ) and (θ ′, ϕ′) and

call the angle between them Θ. The spherical harmonic addition theorem states that

Pl(cos Θ) =
4π

2l + 1

m=+l
∑

m=−l

Ylm(θ, ϕ) Y ∗
lm(θ′, ϕ′) (2.87)

Problem 12: Let r12 = |r1 − r2| be the distance between two points in space so that the r1

direction is (θ1, ϕ1) and r2 direction is (θ2, ϕ2). Prove that

1

|r1 − r2|
=

∞
∑

l=0

m=+l
∑

m=−l

4π

(2l + 1)

rl
<

rl+1
>

Ylm(θ1, ϕ1)Y
∗
lm(θ2, ϕ2) (2.88)

where r< stands for the smaller of the two distances |r1| and |r2|, and r> is the larger of the two

distances.

This result is very useful and we will apply it when we study scattering theory as well as in

variational calculations for the ground state of the helium atom.

Note that the Ylm(θ, ϕ) form a complete set of orthonormal functions, i.e.

∫

dΩ Ylm(θ, ϕ) Y ∗
l′m′(θ, ϕ) = δll′δmm′ (2.89)

and
∞
∑

l=0

m=+l
∑

m=−l

Ylm(θ, ϕ)Y ∗
lm(θ′, ϕ′) =

1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′) (2.90)

This means that any function of θ and ϕ can be expanded as follows:

f(θ, ϕ) =
∞
∑

l=0

m=+l
∑

m=−l

ClmYlm(θ, ϕ) (2.91)

where

Clm =

∫

dΩ Y ∗
lm(θ, ϕ)f(θ, ϕ) (2.92)

Furthermore, if f(θ, ϕ) is the angular wavefunction of some state, normalised such that

∫

dΩ|f(θ, ϕ)|2 = 1 (2.93)

then the |Clm|2 are the probabilities that simultaneous measurement of L̂2 and L̂z on the state

described by f(θ, ϕ) yields l(l + 1)h̄2 and mh̄ respectively.
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In the Dirac notation, an arbitrary state |ψ〉 can be expanded as:

|ψ〉 =
∑

lm

Clm|lm〉 (2.94)

where with the help of the orthonormality condition

〈l′m′|lm〉 = δll′δmm′ (2.95)

we get

Clm = 〈lm|ψ〉 (2.96)

These eigenstates are also complete so:

∞
∑

l=0

m=+l
∑

m=−l

|lm〉〈lm| = Î (2.97)

Problem 13: Using 〈lm′|L̂z|lm〉 = h̄mδm′m and

〈lm′|L̂±|lm〉 = h̄

[

l(l + 1) −m(m± 1)

] 1

2

δm′,m±1

calculate the matrix representation of L̂x, L̂y and L̂z for the AM state 3/2. Check that the

commutation relations hold.

Problem 14: The Hamiltonian of a rigid rotator with principal moments of inertia I1, I2, I3 is

Ĥ =
1

2I1
L̂2

x +
1

2I2
L̂2

y +
1

2I3
L̂2

z

Find the eigenvalues of Ĥ if the AM of the system is 1.

Answer: The eigenvalues are h̄2(α+β), h̄2(β+γ), and h̄2(α+γ), where α = 1
2I1

, β = 1
2I2

, γ = 1
2I3

.

2.2.4 Angular momentum and rotational invariance

The fact that the Hamiltonian commutes with the components of the AM is a consequence of

the invariance of the Hamiltonian under reorientation of the coordinate axes used to describe the

system. For example, a rotation of the axes through an angle α around the z-axis changes the
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coordinate system from S to S ′ where

x′ = x cosα+ y sinα

y′ = −x sinα+ y cosα

z′ = z (2.98)

or in terms of spherical polar coordinates

r′ = r , θ′ = θ , φ′ = φ− α (2.99)

Notice that by Taylor expansion we can write

ψ(r, θ, φ− α) =
∞
∑

n=0

1

n!

(

−α ∂

∂φ

)n

ψ(r, θ, φ)

= exp

(

−α ∂

∂φ

)

ψ(r, θ, φ)

= exp

(

− i

h̄
αL̂z

)

ψ(r, θ, φ) (2.100)

The operator

Û = exp

(

− i

h̄
αL̂z

)

(2.101)

is an example of a rotation operator, in this case a rotation of the axes through an angle α, or

equivalently a rotation of the system through an angle −α, about the z-axis. More generally, a

rotation of the system through an angle ω around the unit vector n will be achieved by the operator

Û = exp

(

i

h̄
ωL̂ · n

)

(2.102)

Note that a rotation operator is unitary:

Û † = exp

(

− i

h̄
ωL̂ · n

)

= Û−1 (2.103)

The fact that the components of L̂ commute with the Hamiltonian ensures that any rotation

operator also commutes with Ĥ. It follows that, if ψ is a possible state of the system with energy

E, then so is Ûψ, with the same energy: if Ĥψ = Eψ and ÛĤ = ĤÛ , then

Ĥ(Ûψ) = ÛĤψ = ÛEψ = E(Ûψ) (2.104)

Conversely, if every rotated state Ûψ is an eigenstate of Ĥ with the same energy as ψ, then all

components of L̂ must commute with Ĥ, which implies that L is a conserved quantity.
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2.3 Spin angular momentum

The electron possesses an internal angular momentum called the spin which can assume only the

values + h̄
2 and − h̄

2 in some arbitrarily chosen direction. In fact, all elementary particles have a spin

degree of freedom. Fermions possess half-integral spin while bosons have integral spin (including

zero). In what follows, we will develop the theory for spin- 1
2 fermions.

Let the spin operator be Ŝ = (Ŝx, Ŝy, Ŝz). If n is a unit vector (pointing in some arbitrary direction),

then the Stern-Gerlach experiment indicates that the eigenvalue of the operator Ŝ ·n has only two

values (which turns out to be ± h̄
2 ) i.e.

Ŝ · n|n,±〉 = ± h̄
2
|n,±〉 (2.105)

Without loss of generality, one can choose n to point in the z−direction. (Then Ŝ · n = Ŝz). The

eigenvalue equation then takes the form:

Ŝz| ↑〉 =
h̄

2
| ↑〉

Ŝz| ↓〉 = − h̄
2
| ↓〉 (2.106)

where | ↑〉 corresponds to the spin “pointing” in the positive z-axis direction (i.e a spin-up state)

and | ↓〉 corresponds to the spin “pointing” in the negative z-axis direction (i.e. a spin-down state).

Since spin is a physical observable, Ŝz is Hermitian and the states belonging to distinct eigenvalues

are orthogonal, that is:

〈↑ | ↓〉 = 〈↓ | ↑〉 = 0 (2.107)

We further normalise them to unity:

〈↑ | ↑〉 = 〈↓ | ↓〉 = 1 (2.108)

The spin operators satisfy the AM commutation relations:

[

Ŝi, Ŝj

]

= ih̄εijkŜk

[

Ŝz, Ŝ±
]

= ±h̄Ŝ±
[

Ŝ+, Ŝ−
]

= 2h̄Ŝz (2.109)

where

Ŝ± = Ŝx ± iŜy
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Ŝx =
1

2
(Ŝ+ + Ŝ−)

Ŝy = −i1
2
(Ŝ+ − Ŝ−) (2.110)

For spin S = 1
2 , Ŝ2 has the eigenvalue 3

4 h̄
2:

Ŝ2| ↑〉 =
3

4
h̄2| ↑〉

Ŝ2| ↓〉 =
3

4
h̄2| ↓〉 (2.111)

Problem 15: Show that:

Ŝ+| ↑〉 = 0

Ŝ−| ↑〉 = h̄| ↓〉

Ŝ+| ↓〉 = h̄| ↑〉

Ŝ−| ↓〉 = 0 (2.112)

We can now represent the spin operators in the basis states | ↑〉 and | ↓〉 by the spin matrices

Ŝi → (Si) =

(

〈↑ |Ŝi| ↑〉 〈↑ |Ŝi| ↓〉
〈↓ |Ŝi| ↑〉 〈↓ |Ŝi| ↓〉

)

(2.113)

Problem 16: Show that:

Ŝ+ = h̄

(

0 1

0 0

)

(2.114)

Ŝ− = h̄

(

0 0

1 0

)

(2.115)

Ŝz =
h̄

2

(

1 0

0 −1

)

(2.116)
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Introducing the Pauli spin matrices by

S =
h̄

2
σ (2.117)

we obtain for them

σx =

(

0 1

1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0

0 −1

)

(2.118)

Problem 17: Show that:

σ2
x = σ2

y = σ2
z = I (2.119)

[σi, σj ] = 2iεijkσk (2.120)

σiσj + σjσi = 2δij (2.121)

Tr(σi) = 0 (2.122)

|σi| = −1 (2.123)

where I is the 2× 2 unit matrix. Show that the above results can be summarised compactly by the

identity

σiσj = δij + iεijkσk (2.124)

Hence, given arbitrary vectors a,b show that

(σ · a)(σ · b) = Ia · b + iσ · (a × b) (2.125)

Problem 18:

Spin state space is a two-dimensional Hilbert space HS , spanned by the orthonormal basis vectors

{| ↑〉, | ↓〉}. In matrix notation, these basis vectors are defined as:

| ↑〉 =

(

1

0

)

| ↓〉 =

(

0

1

)

(2.126)
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These basis vectors are the eigenvectors of the Ŝz, i.e.

Ŝz| ↑〉 = +
h̄

2
| ↑〉

Ŝz| ↓〉 = − h̄
2
| ↓〉 (2.127)

with

〈↑ | ↑〉 = 1

〈↓ | ↓〉 = 1

〈↑ | ↓〉 = 0

〈↓ | ↑〉 = 0 (2.128)

This basis is complete:

| ↑〉〈↑ | + | ↓〉〈↓ | = Î (2.129)

In general, ∀|ψ〉 ∈ HS , we have:

|ψ〉 = α| ↑〉 + β| ↓〉

|α|2 + |β|2 = 1 (2.130)

(Note that in general α and β are complex numbers.) In the {| ↑〉, | ↓〉} basis, the matrix represen-

tation of Ŝz is diagonal:

(Sz) =
h̄

2

(

1 0

0 −1

)

(2.131)

while the x− and y−components of the spin operator are:

(Sx) =
h̄

2

(

0 1

1 0

)

(Sy) =
h̄

2

(

0 −i
i 0

)

(2.132)

• Show that the normalised eigenvectors of Ŝx (denoted by |±〉x) and Ŝy (denoted by |±〉y)
when expanded in the basis {| ↑〉, | ↓〉} are:

|±〉x =
1√
2
[| ↑〉 ± | ↓〉]

|±〉y =
1√
2
[| ↑〉 ± i| ↓〉] (2.133)
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• Let u be a unit vector characterised by polar angles ϑ and ϕ with Cartesian components:

u = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) (2.134)

Show that if Su = S · u then:

(Su) =
h̄

2

(

cosϑ sinϑe−iϕ

sinϑeiϕ − cosϑ

)

(2.135)

Then show that in the basis {| ↑〉, | ↓〉}, the eigenvectors of Su are:

| ↑〉u = cos(
ϑ

2
)e−i ϕ

2 | ↑〉 + sin(
ϑ

2
)ei

ϕ
2 | ↓〉 (2.136)

| ↓〉u = − sin(
ϑ

2
)e−i ϕ

2 | ↑〉 + cos(
ϑ

2
)ei

ϕ
2 | ↓〉 (2.137)

2.3.1 Spinors

In the basis {| ↑〉, | ↓〉}, a general spin state |χ〉 can be written as

|χ〉 = a+| ↑〉 + a−| ↓〉 (2.138)

with complex coefficients a±. Normalisation requires that

|a+|2 + |a−|2 = 1 (2.139)

The state |χ〉 defined above can also be represented by a two-component column vector called a

spinor whose components are given by the projections onto the basis {| ↑〉, | ↓〉}:

|χ〉 =





a+

a−



 =





〈↑ |χ〉
〈↓ |χ〉



 (2.140)

The basis spinors are

χ+ =





1

0



 , χ− =





0

1



 (2.141)

and the completeness relation in this matrix representation is

χ+χ
†
+ + χ−χ

†
− =

(

1 0

0 1

)

(2.142)

Problem 19: An electron is in the spin state

|χ〉 =
1

3
| ↑〉 +

2
√

2

3
| ↓〉



2.3. SPIN ANGULAR MOMENTUM 63

• What is the probability that a measurement of the z−component of the spin will result in
1
2 h̄? In −1

2 h̄?

Answer: 1
9 and 8

9 .

• What is the expectation value of Ŝz?

Answer: − 7
18 h̄

• What is the RMS uncertaintity in Ŝz ?

Answer: 2
√

2
9 h̄.

Spin is an additional degree of freedom independent of the spatial degrees of freedom. Spin and

position (or momentum) can assume precise values simultaneously and independently of one another

i.e.

[Ŝ, r̂] = [Ŝ, p̂] = [Ŝ, L̂] = 0 (2.143)

The total quantum state of a particle is constructed from the direct product of the position and

spin eigenstates. The states |r〉 ⊗ | ↑〉 and |r〉 ⊗ | ↓〉 forms a basis for the Hilbert space (that takes

into account the spatial and spin degrees of freedom). A general state |Ψ〉 in this Hilbert space is

then given by

|Ψ〉 =

∫

dr′
{

ψ+(r′) |r′〉 ⊗ | ↑〉 + ψ−(r′) |r′〉 ⊗ | ↓〉
}

(2.144)

The projection onto position and spin eigenstates are

〈r|Ψ〉 =

∫

dr′
{

ψ+(r′) 〈r|r′〉| ↑〉 + ψ−(r′) 〈r|r′〉| ↓〉
}

= ψ+(r)| ↑〉 + ψ−(r)| ↓〉 (2.145)

since 〈r|r′〉 = δ(r − r′) and

〈r|
(

|r′〉 ⊗ | ↑〉
)

= 〈r|r′〉| ↑〉

〈↑ |
(

〈r|Ψ〉
)

= ψ+(r)

〈↓ |
(

〈r|Ψ〉
)

= ψ−(r) (2.146)

The quantities |ψ±(r)|2 express the probability of finding the particle at position r with z−component

of spin of ± h̄
2 . The normalisation condition is

〈Ψ|Ψ〉 =

∫

dr′
{

〈r′| ⊗ 〈↑ |ψ∗
+(r′) + 〈r′| ⊗ 〈↓ |ψ∗

−(r′)
}{

|r′〉 ⊗ | ↑〉ψ+(r′) + |r′〉 ⊗ | ↓〉ψ−(r′)
}
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=

∫

dr′
[

|ψ+(r′)|2 + |ψ−(r′)|2
]

= 1 (2.147)

2.4 Addition of angular momenta

In general, if we have two angular momentum operators, Ĵ1 and Ĵ2 (where the Ĵi could correspond

to the sum of the orbital AM and the spin AM of one particle, or the spin AM of two electrons,

etc.), we would like to know the possible values of the total AM Ĵ can take where

Ĵ = Ĵ1 + Ĵ2 (2.148)

Assuming that Ĵ1 and Ĵ2 correspond to distinct degrees of freedom, they commute with each other:

[Ĵ1, Ĵ2] = 0 (2.149)

Together with the AM commutation relations for Ĵ1 and Ĵ2 individually, the commutation relations

for Ĵ are given by:

[Ĵi, Ĵj ] = ih̄εijkĴk (2.150)

So all the properties of AM and their eigenstates discussed in the sections above also hold for the

total AM.

We start with states |j1,m1〉 and |j2,m2〉 where the two quantum numbers j1 and j2 are fixed and

the mi take the values −ji, · · · ,+ji. The corresponding eigenvalue equations are:

Ĵ2
1 |j1,m1〉 = h̄2j1(j1 + 1)|j1,m1〉

Ĵ1z|j1,m1〉 = h̄m1|j1,m1〉 (2.151)

Ĵ2
2 |j2,m2〉 = h̄2j2(j2 + 1)|j2,m2〉

Ĵ2z|j2,m2〉 = h̄m2|j2,m2〉 (2.152)

From these states we construct the product states

|j1,m1, j2,m2〉 = |j1,m1〉|j2,m2〉 (2.153)

which are eigenfunctions of Ĵz with eigenvalue h̄(m1+m2). However, these are NOT eigenfunctions

of Ĵ2 since

Ĵ2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ1 · Ĵ2 (2.154)
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and the last term does not commute with Ĵ1z or Ĵ2z:

[Ĵ1 · Ĵ2, Ĵ1z] = [Ĵ1x, Ĵ1z]Ĵ2x + [Ĵ1y, Ĵ1z]Ĵ2y = ih̄(−Ĵ1yĴ2x + Ĵ1xĴ2y) (2.155)

and similarly

[Ĵ1 · Ĵ2, Ĵ2z] = [Ĵ1x, Ĵ1z]Ĵ2x + [Ĵ1y, Ĵ1z]Ĵ2y = ih̄(−Ĵ1xĴ2y + Ĵ1yĴ2x) (2.156)

Thus we cannot simultaneously specify the quantum numbers m1 and m2 together with the eigen-

value of Ĵ2.

The product states (2.153) are eigenstates of the operators

Ĵ2
1 , Ĵ1z, Ĵ

2
2 , Ĵ2z (2.157)

What we need to do is search for states in which Ĵ2 is also diagonal; that is, we seek eigenfunctions

|j,mj , j1, j2〉 (2.158)

of the four mutually commuting operators

Ĵ2, Ĵz, Ĵ
2
1 , Ĵ

2
2 (2.159)

with eigenvalues h̄2j(j + 1), h̄mj , h̄
2j1(j1 + 1), h̄2j2(j2 + 1). At the same time we have to find the

values taken by j (the corresponding mj are then −j, · · · , j), and we have to represent |j,mj , j1, j2〉
as a linear combination of the product states above. Before considering the general case, we first

look at the addition of two spins, and then at the addition of an orbital AM and a spin.

2.4.1 Addition of spin- 1
2

operators

Let Ŝ1 and Ŝ2 be two spin-1
2 operators whose total spin AM is given by

Ŝ = Ŝ1 + Ŝ2 (2.160)

There are four possible product states:

| + +〉 = | ↑〉| ↑〉

| + −〉 = | ↑〉| ↓〉

| − +〉 = | ↓〉| ↑〉

| − −〉 = | ↓〉| ↓〉 (2.161)
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in which the first (second) symbol refers to the first (second) spin. These product states are

eigenstates of the operators Ŝ2
1 , Ŝ

2
2 , Ŝ1z, Ŝ2z.

Problem 20:

• Evaluate the action of the operator Ŝz on each of the product states.

• Show that

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1 · Ŝ2

=
3

2
h̄2 + 2Ŝ1zŜ2z + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+ (2.162)

Hence show that

Ŝ2| − −〉 = 2h̄2| − −〉

Ŝ2| + +〉 = 2h̄2| + +〉 (2.163)

The states | − −〉 and | + +〉 therefore have total spin S = 1 and whose z−component of total

spin takes the value of −h̄ and h̄ respectively.

• Given that Ŝ− = Ŝ1− + Ŝ2− show that

1

h̄
√

2
Ŝ−| + +〉 =

1√
2
(| + −〉 + | − +〉) (2.164)

(The resulting state has been normalised to unity by inserting the factor 1
h̄
√

2
. Show that the

z−component of this state is zero. Using the notation |S,m〉 where S designates the total

spin and m its z−component, we have

|1, 1〉 = | + +〉

|1, 0〉 =
1√
2
(| + −〉 + | − +〉)

|1,−1〉 = | − −〉 (2.165)

• There is an additional state |0, 0〉 which is orthogonal to those given above:

|0, 0〉 =
1√
2
(| + −〉 − | − +〉) (2.166)

By acting on this state with Ŝ2 and Ŝz show that this state has spin zero. So we have found

all the eigenstates of Ŝ2 and Ŝz. The states above corresponding to S = 1 are referred to as

triplet states and that corresponding to S = 0 as a singlet state.
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• Consider the following projection operators:

P̂S=1 =
3

4
+

1

h̄2 Ŝ1 · Ŝ2

P̂S=0 =
1

4
− 1

h̄2 Ŝ1 · Ŝ2 (2.167)

Show that P̂S=1 projects onto triplet states while P̂S=0 projects onto singlet states.

2.4.2 Addition of spin- 1
2

and orbital angular momentum

Starting with L̂ and Ŝ, define the total AM as:

Ĵ = L̂ + Ŝ (2.168)

The eigenstates of the operators L̂2, L̂z, Ŝ
2, Ŝz are given by:

L̂z|l,ml〉 = h̄ml|l,ml〉

L̂2|l,ml〉 = h̄2l(l + 1)|l,ml〉

Ŝz| ↑〉 =
h̄

2
| ↑〉

Ŝz| ↓〉 = − h̄
2
| ↓〉

Ŝ2| ↑〉 =
3

4
h̄2| ↑〉

Ŝ2| ↓〉 =
3

4
h̄2| ↓〉 (2.169)

where ml = −l, · · · , l. From these states one can form 2(2l + 1) product states:

|l,ml〉 ⊗ | ↑〉

|l,ml〉 ⊗ | ↓〉 (2.170)

However, these states are NOT eigenstates of the total AM, Ĵ2. We therefore seek eigenstates of

Ĵ2, Ĵz, L̂
2, Ŝ2 to be obtained by forming linear combinations of the above product states. To this

end, we will make use of the results proved earlier:

L̂±|l,ml〉 = h̄
√

(l ±ml + 1)(l ∓ml)|l,ml ± 1〉 (2.171)
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and

Ĵ2 = L̂2 + Ŝ2 + 2L̂zŜz + L̂+Ŝ− + L̂−Ŝ+ (2.172)

Denote the eigenstates of Ĵ2, Ĵz, L̂
2, Ŝ2 by |j,mj , l〉 (we could have added a fourth index S = 1

2

but this is understood as we are concerned with electron-spin here). Presumably, j, the quantum

number to Ĵ2 has the values:

j = l +
1

2
, l − 1

2
(2.173)

(This would give the right number of states since 2(l + 1
2) + 1 + 2(l − 1

2) + 1 = 2(2l + 1)). First

consider the case j = l + 1
2 and the eigenstate at the top of the ladder:

|j = l +
1

2
,mj = l +

1

2
, l〉 = |l, l〉 ⊗ | ↑〉 (2.174)

Applying Ĵz we have:

Ĵz|l, l〉| ↑〉 = (L̂z + Ŝz)|l, l〉 ⊗ | ↑〉

= h̄(l +
1

2
)|l, l〉 ⊗ | ↑〉

= h̄mj |l, l〉 ⊗ | ↑〉 (2.175)

Applying Ĵ2 we have:

Ĵ2|l, l〉| ↑〉 = h̄2(l(l + 1) +
3

4
+ (2l)

1

2
)|l, l〉 ⊗ | ↑〉

= h̄2(l +
1

2
)(l +

3

2
)|l, l〉 ⊗ | ↑〉

= h̄2j(j + 1)|l, l〉 ⊗ | ↑〉 (2.176)

This shows that |l, l〉| ↑〉 is an eigenstate of Ĵ2 with the eigenvalues j = l+ 1
2 ,mj = l+ 1

2 . To obtain

all other states just apply the lowering operator:

Ĵ− = L̂− + Ŝ− (2.177)

repeatedly to |l, l〉| ↑〉.

Problem 21: Show that

Ĵ−|l, l〉| ↑〉 =
√

(2l)h̄|l, l − 1〉 ⊗ | ↑〉 + h̄|l, l〉 ⊗ | ↓〉

Ĵ−|j = l +
1

2
,mj = l +

1

2
, l〉 =

√

(2l + 1)|j = l +
1

2
,mj = l − 1

2
, l〉 (2.178)
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Hence, we have:

|j = l +
1

2
,mj = l − 1

2
, l〉 =

√

2l

2l + 1
|l, l − 1〉 ⊗ | ↑〉 +

√

1

2l + 1
|l, l〉 ⊗ | ↓〉 (2.179)

By repeated application of Ĵ− one obtains the general result (which can be verified by mathematical

induction with respect to mj):

|j = l +
1

2
,mj , l〉 =

√

l +mj + 1
2

2l + 1
|l,mj −

1

2
〉 ⊗ | ↑〉 +

√

l −mj + 1
2

2l + 1
|l,mj +

1

2
〉 ⊗ | ↓〉 (2.180)

where mj takes half integer values in the range (l+ 1
2), · · · ,−(l+ 1

2). The eigenstates corresponding

to j = l − 1
2 are orthogonal to all the states derived above and where mj = (l − 1

2), · · · ,−(l − 1
2)

are given by

|j = l − 1

2
,mj , l〉 = −

√

l −mj + 1
2

2l + 1
|l,mj −

1

2
〉 ⊗ | ↑〉 +

√

l +mj + 1
2

2l + 1
|l,mj +

1

2
〉 ⊗ | ↓〉 (2.181)

(This can be verified using the same approach as above).

2.4.3 General case

Two arbitrary AM vectors, Ĵ1 and Ĵ2 have AM eigenstates are given by |j1,m1〉 and |j2,m2〉, respec-

tively. Form the total AM vector Ĵ = Ĵ1 + Ĵ2. We then have available two different complete sets of

commuting AM operators: Ĵ2
1 , Ĵ1z, Ĵ

2
2 , Ĵ2z, with eigenstates |j1,m1〉|j2,m2〉 = |j1,m1, j2,m2〉, and

Ĵ2, Ĵz, Ĵ
2
1 , Ĵ

2
2 , with eigenstates |j,m, j1, j2〉. Both sets of eigenstates form a complete orthonormal

system, which implies that they can be expanded in terms of each other. For example the expansion

of |j,m, j1, j2〉 in the basis {|j1,m1, j2,m2〉} is:

|j,m, j1, j2〉 =
∑

m=m1+m2

|j1,m1, j2,m2〉〈j1,m1, j2,m2|j,m, j1, j2〉 (2.182)

The (real) coefficients 〈j1,m1, j2,m2|j,m, j1, j2〉 are called Clebsch-Gordan coefficients. (Note

that because the z-component of the AM is conserved, the only composite states that contribute

to the above sum are those for which m = m1 + m2). In a commonly applied terminology, one

refers to |j,m, j1, j2〉 as an eigenfunction in the coupled representation and to |j1,m1, j2,m2〉 as an

eigenfunction in the the uncoupled representation. The allowed values that j can take (given j1 and

j2) are

j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2| (2.183)
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with the possible values of m being:

m = m1 +m2 = j, j − 1, . . . ,−j (2.184)

A general formula for the Clebsch-Gordan coefficients has been derived by Wigner (using group

theory) and numerical tables of these coefficients can be found in books dealing with atomic spec-

troscopy.



Chapter 3

Approximation Methods For Bound

States

3.1 Introduction

There are very few problems in QM that can be solved exactly. To use QM either to verify or

predict the results of experiments, one needs to resort to approximation techniques such as

• Variational methods

• Perturbative methods

• The JWKB method

3.2 Variational methods

Variational methods (usually used to determine the ground state) involve using a parameterised

trial wave function to represent the ground state wave function. The parameters are optimised

to minimise the ground state energy. Consider a physical system whose Hamiltonian Ĥ is time

independent. Assume that the entire spectrum of Ĥ is discrete and non-degenerate.

Ĥ|ψn〉 = En|ψn〉 (n = 0, 1, 2, . . .) (3.1)

The energy spectrum is ordered as follows:

E0 < E1 < E2 < . . . (3.2)

71
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3.2.1 Variational theorem

If |Ψ〉 represents an arbitrary state of the system, then:

〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ E0 (3.3)

with the equality occurring if and only if |Ψ〉 is the ground state eigenvector of Ĥ with eigenvalue

E0 (the ground state energy).

Proof: Expand |Ψ〉 in the basis of the normalised eigenstates of Ĥ:

|Ψ〉 =
∑

n

cn|ψn〉 (3.4)

This implies:

〈Ψ|Ĥ|Ψ〉 =
∑

n

∑

m

〈ψm|Ĥ|ψn〉 c∗m cn (3.5)

=
∑

n

|cn|2En

and

〈Ψ|Ψ〉 =
∑

n

∑

m

〈ψm|ψn〉c∗m cn (3.6)

=
∑

n

|cn|2

Therefore

〈Ĥ〉 =

∑

n |cn|2En
∑

n |cn|2
(3.7)

Since E0 < E1 < E2 < . . .,
∑

n

|cn|2En ≥ E0

∑

n

|cn|2 (3.8)

so that

〈Ĥ〉 ≥ E0
∑

n |cn|2
∑

n |cn|2
= E0 (3.9)

The equality sign holds when c0 = 1 and cn = 0 ∀ n 6= 0, i.e. when |Ψ〉 = |ψ0〉.

In actual applications to determine the ground state properties of bound systems, one first chooses

a trial wave function ψtrial(r, {α, β, . . .}) which depends on the parameters α, β, . . . etc. We then

calculate the expectation value

E(α, β, . . .) =
〈ψtrial|Ĥ|ψtrial〉
〈ψtrial|ψtrial〉

(3.10)
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which (from the variational theorem) is an upper bound to the ground state energy of the system.

(The only restriction on ψtrial(r, {α, β, . . .}) is that it obeys the same boundary conditions as the

eigenstates of the Hamiltonian, Ĥ. Otherwise, Eq. (3.4) is not valid.) We of course choose trial

wave functions that are appropriate for the problem at hand.

We then optimise the parameters α, β, . . . by determining those values of α, β, . . . which minimise

E(α, β, . . .) for that particular trial wave function. This means that we have to solve the following

set of equations (linear or non-linear, depending on the functional form of ψtrial(r, {α, β, . . .}) )

∂

∂α
E(α, β, . . .) = 0

∂

∂β
E(α, β, . . .) = 0 (3.11)

etc. Suppose we denote the values of the parameters that minimise E(α, β, . . .) by (ᾱ, β̄, . . .). Then

the minimum value, E(ᾱ, β̄, . . .) constitutes an upper bound to the exact ground state energy,

while the trial wave function for the optimal values, ψ(r, {ᾱ, β̄, . . .}), is an approximation to the

exact ground state wave function.

Problem 1: Consider

E = 〈ψtrial|Ĥ|ψtrial〉

with an arbitrary normalised trial wave function, ψtrial. Show that if ψtrial differs from the correct

ground state wave function, ψ0, by terms of order ε, then E as defined above differs from the ground

state energy by order ε2.

Problem 2: Use the variational method to show that a one-dimensional attractive potential will

always have a bound state. (Hint: Consider a square well that will fit inside the potential.)

Problem 3: Use the variational method to estimate the ground state energy for the anharmonic

oscillator

Ĥ =
P̂ 2

2m
+ λx̂4

Compare your result with the exact result

E0 = 1.060λ1/3
(

h̄2

2m

)2/3

(Hint: Use a Gaussian trial wave function.)

Answer: Using

ψtrial(x) =

√

β√
π
e−

1

2
β2x2
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the optimal value of β = (6mλ/h̄2)
1

6 giving Emin = 1.083( h̄2

2m)
2

3λ
1

3 .

Problem 4†: A particle of mass m (moving in three dimensions) is bound in the ground state of

the exponential potential

V (r) = − 4h̄2

3ma2
e−r/a

Using

ψtrial(r) = A e(−βr/2a)

as a trial function with β as the variational parameter (A is determined by normalisation), obtain

an upper bound for the ground state energy.

Answer: Optimal value is β = 1 and the upper bound for the ground state energy is − h̄2

24ma2 .

Problem 5†: Let E1 and E2 be the ground state energies of a particle of mass m moving in the

attractive potentials V1(r) and V2(r) respectively. If V1(r) ≤ V2(r) for all r one intuitively expects

E1 ≤ E2. Use a variational argument to derive this result.

3.2.2 Interlude : atomic units

In this section we deal with a system of units called atomic units that is widely used in atomic,

molecular and solid-state physics. What it boils down to is a set of units such that the following

fundamental quantities, h̄,m, |e|, 4πε0 are set to 1. Here m is the electron mass, |e| the magnitude

of its charge, and ε0 the permittivity of free space. What this means is that the Hamiltonian for a

hydrogen-like atom reduces from

Ĥ = − h̄2

2m
∇2 − Ze2

4πε0r

to

Ĥ = −1

2
∇2 − Z

r

which is independent of any physical constants. It turns out that other physical quantities can be

expressed in terms of the above four basic units (i.e. they are derived units). Most important of

these are the atomic unit of length, called the bohr, defined by

a0 =
4πε0h̄

2

me2
= 1 (au)

where a0 is the Bohr radius of the hydrogen atom in its ground state. (Note that “au” is an

abbreviation for atomic units). In the same way, a more “natural” unit for energy is the hartree,

defined by

1 hartree =
me4

16π2ε20h̄
2 = 1 (au)
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such that the ground state energy of the hydrogen atom is − 1
2 hartree.

Problem 6†: Given the following SI equivalent quantities

m = 9.1091 × 10−31 kg |e| = 1.6021 × 10−19 C

h̄ = 1.0545 × 10−34 Js 4πε0 = 1.1126 × 10−10 C2J−1m−1

show that

(a) The atomic unit of length, the bohr is 5.29167 × 10−11 m = 0.529167 Å.

(b) The atomic unit of energy, the hartree is 4.35944 × 10−18 J = 27.211 eV.

(c) Express one hartree in units of kilojoules per mole and wavenumbers. Answer: 2625 kJ mol−1,

ν = 1
λ = 2.195×105 cm−1. Note that wavenumbers are used commonly in spectroscopy.

(d) Show that the speed of light in atomic units is approximately equal to 137 au.

3.2.3 Hydrogen molecular ion, H+
2

We now apply the variational method to a “real” problem. The simplest molecule is the H+
2 ion. It

so happens that it is possible to solve the Schrödinger equation for this molecule exactly. (Within

the Born-Oppenheimer approximation, the Schrödinger equation for an electron in the field of

the two fixed protons is separable in elliptic coordinates.) Unfortunately, the solutions are quite

complicated and not easy to use. Instead, we will “solve” this problem approximately via the

variational method, where trial wavefunctions are chosen and the energy is minimised with respect

to some variational parameter (which in this case is the inter-proton distance). The Hamiltonian

for the problem, in atomic units, is

Ĥ = −1

2
∇2 − 1

|r − R1|
− 1

|r − R2|
+

1

|R1 − R2|
(3.12)

The first term represents the kinetic energy of the electron, the second and third terms describe

the attractive Coulomb interaction between the electron and protons 1 and 2 with position vectors

R1 and R2 respectively. The last term is the repulsive interaction between the two protons. The

vector r denotes the position of the electron and we define the relative vector R = R1 − R2. Its

magnitude R is the distance between the two protons. For the trial wavefunction we use a linear
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combination of 1s hydrogen atom wavefunctions localised at the first (ψ1) and second (ψ2) proton.

We have

ψ(r) = αψ1(r) + βψ2(r) (3.13)

where

ψ1 =
1√
π
e−|r−R1| (3.14)

ψ2 =
1√
π
e−|r−R2| (3.15)

Note that there is symmetry under reflection with respect to a plane lying exactly between the two

protons. The wavefunction therefore has the same symmetry and can be classified by its parity.

For positive parity, α = β while for negative parity, α = −β. This means that

ψ+(r) = N+

[

ψ1(r) + ψ2(r)

]

(3.16)

ψ−(r) = N−

[

ψ1(r) − ψ2(r)

]

(3.17)

where N± are normalisation constants which are determined by the condition 〈ψ±|ψ±〉 = 1, i.e.

N2
+[2 + 2

∫

drψ∗
1(r)ψ2(r)] = 1 (3.18)

N2
−[2 − 2

∫

ψ∗
1(r)ψ2(r)] = 1 (3.19)

By defining the overlap integral U(R),

U(R) =

∫

drψ∗
1(r)ψ2(r) (3.20)

where R = |R1 − R2| is the inter-proton distance, the above equation reduces to

N± =
1

√

2[1 ± U(R)]
(3.21)

Problem 7: Show that

U(R) =

(

1 +R+
1

3
R2

)

e−R (3.22)

Hint: Starting from

U(R) =
1

π

∫

dr e−|r−R1|−|r−R2|
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make a transformation to relative R = R1−R2 and center-of-mass coordinates, Rcm = 1
2(R1+R2),

and making use of the obvious translational invariance to get

U(R) =
1

π

∫

dr e−|r− 1

2
R|−|r+ 1

2
R|

The azimuthal symmetry of the integrand about the axis in the direction of R means we can use

elliptical coordinates to carry out the integral. The transformation equations are given by

x =
R

2

[

(ξ2 − 1)(1 − η2)

]
1

2

cosφ y =
R

2

[

(ξ2 − 1)(1 − η2)

]
1

2

sinφ z =
R

2
ξη

where ξ ∈ [1,∞), η ∈ [−1, 1], φ ∈ [0, 2π). We then have

|r ± 1

2
R| =

R

2
(ξ ± η)

which gives

U(R) =
1

π

R3

8

∫ 2π

0
dφ

∫ 1

−1
dη

∫ ∞

1
dξ (ξ2 − η2) e−Rξ

Carrying out the integrals gives the required result.

The expectation value of the Hamiltonian with respect to ψ± is given by

ε+(R) =
〈ψ1|Ĥ|ψ1〉 + 〈ψ2|Ĥ|ψ2〉 + 2〈ψ1|Ĥ|ψ2〉

2(1 + U)

ε−(R) =
〈ψ1|Ĥ|ψ1〉 + 〈ψ2|Ĥ|ψ2〉 − 2〈ψ1|Ĥ|ψ2〉

2(1 − U)
(3.23)

By symmetry we have 〈ψ1|Ĥ|ψ1〉 = 〈ψ2|Ĥ|ψ2〉 so the above equations reduce to

ε±(R) =
〈ψ1|Ĥ|ψ1〉 ± 〈ψ1|Ĥ|ψ2〉

(1 ± U)
(3.24)

Problem 8: Show that

〈ψ1|Ĥ|ψ1〉 =

∫

dr ψ∗
1(r)Ĥψ1(r)

= εH1 +
1

R
−
∫

dr
|ψ1(r)|2
|r − R2|

= εH1 +
1

R

(

1 +R

)

e−2R (3.25)

〈ψ1|Ĥ|ψ2〉 =

∫

dr ψ∗
1(r)Ĥψ2(r)
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=

(

εH1 +
1

R

)

U(R) −
∫

dr
ψ∗

1(r)ψ2(r)

|r − R2|

=

(

εH1 +
1

R

)

U(R) + (1 +R)e−R (3.26)

where εH1 is the energy of the 1s state of the hydrogen atom (−0.5 hartree).

Hint: Use elliptical coordinates as in the previous problem to carry out the integrations.

Putting all the various integrals together, we determine ε±(R) as a function of R. This is shown in

the sketch below.

R

E

Note that the state with positive parity (solid line) is bound since ε+(R) has a minimum while the

state with negative parity (dashed) has no minimum, i.e. that state is never bound. Experimentally

the binding energy is −2.8 eV with R = 1.06 Åwhile our calculations gives −1.76 eV at the

variational minimum value of R = 1.3 Å, which is not bad for such a crude trial function!

3.2.4 Generalisation: Ritz theorem

The variational theorem is generalised as follows:

Theorem: The expectation value of the Hamiltonian is stationary in the neighbourhood of the
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discrete eigenvalues.

Proof: By stationary, we mean that the change in the value of 〈Ĥ〉 when the state vector is changed

by an infinitesimal amount is zero (to first order in the change in the state vector). We need to

show that each stationary expectation value is an eigenvalue of Ĥ. Let

〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (3.27)

Note that this is a “functional” of the state vector |Ψ〉. Consider an infinitesimally small change

to |Ψ〉:
|Ψ〉 → |Ψ〉 + |δΨ〉 (3.28)

We need to determine the corresponding change to 〈Ĥ〉. From (3.27) we have

〈Ψ|Ψ〉〈Ĥ〉 = 〈Ψ|Ĥ|Ψ〉 (3.29)

Inserting (3.28) into the above equation we have:

(〈Ψ| + 〈δΨ|)(|Ψ〉 + |δΨ〉)[〈Ĥ〉 + δ〈Ĥ〉] = (〈Ψ| + 〈δΨ|)Ĥ(|Ψ〉 + |δΨ〉) (3.30)

which when expanded out gives:

(〈Ψ|δΨ〉 + 〈Ψ|Ψ〉 + 〈δΨ|Ψ〉 + 〈δΨ|δΨ〉)[〈Ĥ〉 + δ〈Ĥ〉]

= 〈Ψ|Ĥ|δΨ〉 + 〈Ψ|Ĥ|Ψ〉 + 〈δΨ|Ĥ|δΨ〉 + 〈δΨ|Ĥ|Ψ〉 (3.31)

Using (3.28), dropping all terms of second order, after some algebra we finally get:

δ〈Ĥ〉〈Ψ|Ψ〉 = 〈Ψ|(Ĥ − 〈Ĥ〉)|δΨ〉 + 〈δΨ|(Ĥ − 〈Ĥ〉)|Ψ〉 (3.32)

Thus 〈Ĥ〉 is stationary, i.e. δ〈Ĥ〉 = 0, provided the right hand side of (3.32) is zero:

〈Ψ|(Ĥ − 〈Ĥ〉)|δΨ〉 + 〈δΨ|(Ĥ − 〈Ĥ〉)|Ψ〉 = 0 (3.33)

Suppose we define |Φ〉 = (Ĥ − 〈Ĥ〉)|Ψ〉. Then (3.33) becomes:

〈Φ|δΨ〉 + 〈δΨ|Φ〉 = 0 (3.34)

This must be satisfied for any |δΨ〉. Let us choose a |δΨ〉 such that:

|δΨ〉 = δλ|Φ〉 (3.35)

where δλ is a number of first order in small quantities. This implies that (3.34) becomes:

2δλ〈Φ|Φ〉 = 0 (3.36)
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i.e. that the norm of |Φ〉 equals zero. Therefore, |Φ〉 must be zero, i.e.

(Ĥ − 〈Ĥ〉)|Ψ〉 = 0 (3.37)

This implies that:

Ĥ|Ψ〉 = 〈Ĥ〉|Ψ〉 (3.38)

Therefore the right hand side of (3.27) is stationary if and only if the state vector |Ψ〉 corresponds

to an eigenvector of Ĥ, and the stationary values correspond to the eigenvalues of Ĥ.

3.2.5 Linear variation functions

Representations of eigenstates for all except the simplest systems are complicated functions. In

practice, we expand the arbitrary eigenstate |Ψ〉 as a sum of a finite number (N) of functions

(whose functional form are chosen depending on the type of system under study) so that:

|Ψ〉 =
N
∑

i=1

ci |i〉 (3.39)

and these functions are assumed linearly independent (but not necessarily mutually orthogonal).

For example |i〉 can be plane waves, or Gaussian functions or a mixture of both, etc. Here ci are

complex numbers that are to be determined. The optimal choice for these linear coefficients, from

the variational theorem, are those that make Ĥ stationary. We have

〈Ψ|Ĥ|Ψ〉 − E〈Ψ|Ψ〉 = 0 (3.40)

(We set E = 〈Ĥ〉). Substituting (3.39) into (3.40) yields:

N
∑

i=1

N
∑

j=1

c∗j ci Hji − E
N
∑

i=1

N
∑

j=1

c∗j ci Sji = 0 (3.41)

where

Hji = 〈j|Ĥ|i〉

Sji = 〈j|i〉 (3.42)

Differentiating (3.41) with respect to c∗l gives:

N
∑

i=1

(Hli − E Sli) ci = 0 (3.43)
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Cramer’s rule tells us that all the ci’s are zero unless the determinant of the coefficients vanishes:

|H − E S| = 0 (3.44)

Here H is the N × N matrix whose coefficients are Hji defined above, i.e. it is the matrix repre-

sentation of the Hamiltonian in the basis {|i〉}. The N × N matrix S whose coefficients are Sji

is called the overlap matrix. Equation (3.44) is called the secular equation for the energy E

and is an N th order polynomial in E. This yields N real roots, some of which may be degenerate.

Arranging these roots in order of increasing value as

Ẽ0 ≤ Ẽ1 ≤ . . . ẼN−1

we can compare them with the exact spectrum of the system (in order of increasing energy)

E0 ≤ E1 ≤ . . . ≤ EN−1 ≤ EN ≤ . . .

From the variation theorem, we know that

E0 ≤ Ẽ0 (3.45)

Moreover, it can be proved1 that

E1 ≤ Ẽ1, E2 ≤ Ẽ2, . . . , EN−1 ≤ ẼN−1 (3.46)

Thus the linear variation method provides upper bounds to the energies of the lowest N eigenstates

of the system. The roots of Eq. (3.44) are used as approximations to the energies of the lowest

eigenstates. Increasing the value of N in (3.39) (which corresponds to increasing the number of

functions to represent the eigenstates) can be shown to increase (or at worst cause no change in)

the accuracy of the previously calculated energies. If the set of functions {|i〉} form a complete set,

then we will obtain the exact wave functions of the system. Unfortunately, to have a complete set,

we usually need an infinite number of expansion functions!

To obtain an approximation to the ground state wave function, we take the lowest root Ẽ0 of the

secular equation and substitute it into the set of equations (3.43); we then solve this set of equations

for the coefficients c01, c
0
2, . . . , c

0
N , where the superscript is added to indicate that these coefficients

correspond to Ẽ0. (As Eq. (3.43) constitutes a set of linear, homogeneous equations, we can only

determine ratios of coefficients; we solve the c01, c
0
2, . . . , c

0
N in terms of c01, and then determine c01

by normalisation).

Having found the c0i ’s, we take

|Ψ〉 =
N
∑

i=1

c0i |i〉

1J.K. MacDonald, Phys. Rev. 43, p.830 (1933); R.H. Young, Int. J. Quantum Chem. 6, p.596 (1972).
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as an approximate ground state wave function. Use of the higher roots of Eq. (3.39) in Eq. (3.43)

gives approximations to the excited-state wave functions (which can be shown to be mutually

orthogonal.) This approach forms the basis for most electronic structure calculations in physics

and chemistry to determine the electronic structure of atoms, molecules, solids, surfaces, etc.

Problem 10†: Let V (x) = 0 for −1 ≤ x ≤ +1 and ∞ otherwise (the “particle in a box” problem).

Use

f1(x) = (1 − x2)

f2(x) = (1 − x4)

to construct the trial function

|Ψ〉 =
2
∑

i=1

ci fi(x)

Find the approximate energies and wave functions for the lowest two states and compare your

results with the exact solutions to the problem.

Solution: First construct the overlap (S) and Hamiltonian matrix (H), in the above f1, f2 basis.

The overlap matrix elements are:

S11 =
16

15
, S22 =

64

45
, S12 = S21 =

128

105

and the hamiltonian matrix elements are:

H11 =
4h̄2

3m
, H22 =

16h̄2

7m
, H12 = H21 =

8h̄2

5m

Now solve the generalised eigenvalue problem to get the eigenvalues 1.23 h̄2

m and 12.77 h̄2

m .

When we compare this with the exact eigenvalues for the first three states, ≈ 1.23 h̄2

m , 4.93 h̄2

m and

11.10 h̄2

m , we find that our calculation gives the upper bounds to the first and third state. (Note

that the estimate for the ground state is very close but NOT equal to the exact value.) Since the

basis functions are even functions it is not suprising that we do not get an estimate for the second

state as this is a odd function!

Problem 10: Consider the one-dimensional infinite well of length L. The Hamiltonian for the

system is Ĥ = − h̄2

2m
d2

dx2 +V (x) where V (x) = 0 for x ∈ [0, L] and ∞ otherwise. Find the approximate

energies and wave functions for the lowest four states and compare your results with the exact

solutions to the problem. The linear variation function is given by

|Ψ〉 =
4
∑

i=1

ci fi(x)
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with

f1(x) = x (L− x)

f2(x) = x2 (L− x)2

f3(x) = x (L− x) (
1

2
L− x)

f4(x) = x2 (L− x)2 (
1

2
L− x)

Answer: You must first note that f1, f2 are even functions while f3, f4 are odd. This simplifies

evaulation of integrals when we determine the overlap and hamiltonian matrix elements. We get:

S13 = S31 = S14 = S41 = S23 = S32 = S24 = S42 = 0

and the same for the corresponding hamiltonian matrix elements. The other non-zero matrix

elements are given by:

S11 =
L5

30
, S22 =

L9

630
, S12 = S21 =

L7

140
, S33 =

L7

840
, S44 =

L11

27720
, S34 = S43 =

L9

5040

and

H11 =
L3

6
H22 =

L7

105
, H12 = H21 =

L5

30
, H33 =

L5

40
, H44 =

L9

1260
, H34 = H43 =

L7

280

where the Hamiltonian matrix elements are in units of h̄2

m .

The secular determinant reduces to a block diagonal form so that instead of having to evaluate

a 4 × 4 determinant, we have two 2 × 2 determinants to work out, which is much easier! The

eigenvalues (in units of h̄2

mL2 ) are ≈ 0.125, 0.500, 1.293 and 2.539. The exact eigenvalues are

0.125, 0.500, 1.125, and 2.000, for the first four states. Note that now we have estimates of all four

states as we have included even and odd functions in our basis set.

3.3 Perturbation methods

3.3.1 Time-independent perturbation theory

Consider a time-independent Hamiltonian, Ĥ (whose spectrum is {En}) where

Ĥ = Ĥ0 + λ Ŵ (3.47)
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in which effects on the system due to Ĥ0 (the unperturbed Hamiltonian whose spectrum is E
(0)
n )

are the dominant ones while those due to λŴ (the perturbation) are relatively weaker. The real

number λ ∈ [0, 1] parameterises the strength of the perturbation. The perturbation will shift energy

levels and/or split degeneracies. We will distinguish between non-degenerate and degenerate cases.

For the non-degenerate case we shall assume

1. that both Ĥ and Ĥ0 have discrete spectra so the corresponding eigenstates {|ψn〉} and {|ψ(0)
n 〉}

form complete, orthonormal sets.

2. there is a one-to-one correspondence between the eigenvalues of Ĥ0 and Ĥ (i.e. quantum

states do not appear or disappear when the perturbation is switched off).

3. the perturbation is “weak” (i.e. it does not alter the eigenstates very much).

The aim of perturbation theory is to estimate the corrections that need to be made to E
(0)
n and

|ψ(0)
n 〉 to give the required En and |ψn〉 where:

Ĥ|ψn〉 = En|ψn〉 (3.48)

Note that this can be an iterative process (i.e. the approximate solutions obtained can be fed back

into the process to obtain a better approximation).

Assume that the eigenvalues and eigenfunctions of Ĥ can be expanded in a power series in λ:

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

|ψn〉 = |ψ(0)
n 〉 + λ|ψ(1)

n 〉 + λ2|ψ(2)
n 〉 + · · · (3.49)

Note that:

• This series is not guaranteed to converge. However, in many cases it is an asymptotic expan-

sion i.e. the first few terms nevertheless give reliable results.

An asymptotic expansion of a function f(λ),

f(λ) =
m
∑

k=0

akλ
k +Rm(λ) (3.50)

is characterised by the following behaviour of the remainder:

lim
λ→0

Rm(λ)

λm
= 0

lim
m→∞Rm(λ) = ∞ (3.51)
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• There exist cases where En and ψn are NOT expandable in λ. For example, the bound states

of a potential cannot be obtained from the continuum states via PT.

Non-degenerate perturbation theory

Substituting (3.49) into (3.48) we get:

(Ĥ0 + λŴ )(|ψ(0)
n 〉 + λ|ψ(1)

n 〉 + λ2|ψ(2)
n 〉 + · · ·) = (E(0)

n + λE(1)
n + λ2E(2)

n + · · ·)(|ψ(0)
n 〉

+ λ|ψ(1)
n 〉 + λ2|ψ(2)

n 〉 + · · ·) (3.52)

Comparing coefficients of λ0, λ1, λ2, . . . we have:

0th Order term

Ĥ0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 (3.53)

1st Order term

Ĥ0|ψ(1)
n 〉 + Ŵ |ψ(0)

n 〉 = E(0)
n |ψ(1)

n 〉 + E(1)
n |ψ(0)

n 〉 (3.54)

2nd Order term

Ĥ0|ψ(2)
n 〉 + Ŵ |ψ(1)

n 〉 = E(0)
n |ψ(2)

n 〉 + E(1)
n |ψ(1)

n 〉 + E(2)
n |ψ(0)

n 〉 (3.55)

Problem 11: Verify Eqs. (3.53) - (3.55).

Without loss of generality, we fix the normalisation of |ψn〉 by

〈ψ(0)
n |ψn〉 = 1 (3.56)

This implies (for any λ)

λ〈ψ(0)
n |ψ(1)

n 〉 + λ2〈ψ(0)
n |ψ(2)

n 〉 + . . . = 0 (3.57)

which means that

〈ψ(0)
n |ψ(1)

n 〉 = 〈ψ(0)
n |ψ(2)

n 〉 = . . . = 0 (3.58)

If we multiply (3.54) by 〈ψ(0)
n | and make use of (3.53) we end up with

E(1)
n = 〈ψ(0)

n |Ŵ |ψ(0)
n 〉 (3.59)
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which is the 1st order correction to the energy of the nth eigenstate. Using the fact that {|ψ(0)
m 〉}

form a complete orthonormal set, and making use of the result (3.58) we find:

|ψ(1)
n 〉 =

∑

m6=n

cm|ψ(0)
m 〉 (3.60)

with

cm = 〈ψ(0)
m |ψ(1)

n 〉 (3.61)

Multiplying (3.55) by 〈ψ(0)
m | (which is different from 〈ψ(0)

n |) we find

cm(E(0)
n − E(0)

m ) = 〈ψ(0)
m |Ŵ |ψ(0)

n 〉 (3.62)

giving the 1st order correction to the state |ψ(0)
n 〉 as:

|ψ(1)
n 〉 =

∑

m6=n

〈ψ(0)
m |Ŵ |ψ(0)

n 〉
E

(0)
n − E

(0)
m

|ψ(0)
m 〉 (3.63)

Problem 12: Prove that the 2nd order correction to the energy is given by:

E(2)
n = 〈ψ(0)

m |Ŵ |ψ(1)
n 〉

=
∑

m6=n

|〈ψ(0)
m |Ŵ |ψ(0)

n 〉|2

E
(0)
n − E

(0)
m

(3.64)

Important points to note are:

• For the ground state, the 2nd order shift in energy, E
(2)
0 is negative.

• If the matrix elements of Ŵ are of comparable magnitude, neighbouring levels make a larger

contribution than distant levels, in 2nd order PT.

• When the perturbation is switched on, the energy levels spread apart as if they repel one

another.

Problem 13: The following Hamiltonian matrix has been constructed using an orthonormal basis

H =







1 0 0

0 3 0

0 0 −1






+







0 c 0

c 0 0

0 0 c







Here H = H0 + W and c is a constant.
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(a) Find the exact eigenvalues of H.

Answer: E1 = 2 −
√

1 + c2, E2 = 2 +
√

1 + c2, E3 = c− 2.

(b) Use perturbation theory to determine the eigenvalues correct to second order in c.

Answer: The energy eigenvalues, up to second order are 1 − 1
2c

2, 3 + 1
2c

2, c− 2.

(c) Compare the results of steps (a) and (b).

Problem 14: A one-dimensional particle-in-a-box has V (x) = 0 for 0 ≤ x ≤ a and ∞ otherwise.

It is perturbed by the potential

W (x) = −λ sin(πx/a)

for 0 ≤ x ≤ a and 0 otherwise. Calculate the approximate ground state energy using first-order

perturbation theory.

Answer: h2

8ma2 − 8λ
3π .

Problem 15†: For the same particle-in-a-box, consider a perturbation given by

W (x) =







−2bx
a + b, 0 ≤ x ≤ a/2

2bx
a − b, a/2 ≤ x ≤ a

Determine the eigenvalues of the perturbed system to first order assuming that b � E
(0)
1 where

E
(0)
1 is the ground-state energy of the unperturbed system.

Answer: For n odd, we have E
(1)
n = 1

2b− 2b
(nπ)2

while for n even, we have E
(1)
n = 1

2b.

Problem 16: Evaluate the first and second order corrections to the energy levels of the “slightly”

anharmonic oscillator with potential energy

V (x) =
1

2
mω2x̂2 + αx̂3 + βx̂4

where the perturbation is

W (x) = αx̂3 + βx̂4

(Hint: Use the results of Chapter 1 Problem 17.)

Answer:

En =

(

n+
1

2

)

h̄ω +
3

4
β(2n2 + 2n+ 1)

(

h̄

mω

)2

− 1

8

α2

h̄ω
(30n2 + 30n+ 11)

(

h̄

mω

)3

− 1

8

β2

h̄ω
(34n3 + 51n2 + 59n+ 21)

(

h̄

mω

)4
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Perturbation theory for degenerate states

The formulae derived above break down when there is degeneracy in the energy levels of the un-

perturbed Hamiltonian, Ĥ0, i.e. when there are linearly independent eigenfunctions corresponding

to the same eigenvalue. When this happens, some of the denominators in the 1st order correc-

tion to the eigenfunction or the 2nd order correction to the energy eigenvalues vanish, leading to

divergences. Below we work out a scheme to fix this.

Suppose the eigenvalue E
(0)
n is g−fold degenerate, i.e. there are g linearly independent eigenfunc-

tions, {|φnα〉}, α = 1, . . . , g belonging to this eigenvalue. The {|φnα〉} can be chosen to be or-

thonormal.

Ĥ0|φnα〉 = E(0)
n |φnα〉

〈φnα|φnβ〉 = δαβ (α, β = 1, . . . , g) (3.65)

Let

|ψ(0)
ni 〉 =

g
∑

α=1

ciα|φnα〉 (i = 1, . . . , g) (3.66)

where the ciα are constants to be determined.

Then we want to find

Eni = E(0)
n + λE

(1)
ni + λ2E

(2)
ni + · · ·

|ψni〉 = |ψ(0)
ni 〉 + λ|ψ(1)

ni 〉 + λ2|ψ(2)
ni 〉 + · · · (i = 1, . . . , g) (3.67)

such that

Ĥ|ψni〉 = (Ĥ0 + λŴ )|ψni〉 = Eni|ψni〉 (3.68)

In general, the states |ψni〉, i = 1, . . . , g will have different energies Eni, i.e. the effect of the

perturbation Ŵ is to split the g−fold degenerate level E
(0)
ni into several groups of levels (at most

g of them). Note however that it is possible that Ŵ only shifts the levels without splitting them.

As stated earlier, the perturbation expansions for the states, in the presence of degeneracies in the

spectrum of Ĥ0, will in general contain terms with zero denominators. Hence these expansions will

only make sense if these terms also have vanishing numerators at the same time. So we demand

that

〈ψ(0)
ni |Ŵ |ψ(0)

nj 〉 = 〈ψ(0)
ni |Ŵ |ψ(0)

ni 〉δij (i, j = 1, . . . , g) (3.69)

i.e. the g × g matrix whose elements are 〈ψ(0)
ni |Ŵ |ψ(0)

nj 〉 must be a diagonal matrix. Our earlier

formula (3.54) becomes:

(Ĥ0 − E(0)
n )|ψ(1)

ni 〉 = (E
(1)
ni − Ŵ )|ψ(0)

ni 〉 (3.70)
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Multiplying the above equation by 〈ψ(0)
ni | gives

E
(1)
ni 〈ψ

(0)
ni |ψni〉 = 〈ψ(0)

ni |Ŵ |ψ(0)
ni 〉 (3.71)

Again fixing the normalisation such that

〈ψ(0)
ni |ψni〉 = 1 (3.72)

we have the first order correction as:

E
(1)
ni = 〈ψ(0)

ni |Ŵ |ψ(0)
ni 〉 (3.73)

To determine the coefficients cni, starting from (3.70) and multiplying by 〈φnβ | we get:

〈φnβ |
[

Ĥ0 − E(0)
n

]

|ψ(1)
ni 〉 = 〈φnβ |

[

(E
(1)
ni − Ŵ )

]

|ψ(0)
ni 〉

=⇒ 〈φnβ |Ŵ |ψ(0)
ni 〉 = E

(1)
ni 〈φnβ |ψ(0)

ni 〉

=⇒
g
∑

α=1

ciα〈φnβ |Ŵ |φnα〉 = E
(1)
ni

g
∑

α=1

ciα〈φnβ |φnα〉 (3.74)

which reduces to:
g
∑

α=1

ciα

[

〈φnβ |Ŵ |φnα〉 − 〈φnβ |φnα〉E(1)
ni

]

= 0 (3.75)

Using the orthonormality of the {|φnα〉}, the above equation reduces to:

g
∑

α=1

ciα

[

〈φnβ |Ŵ |φnα〉 − δαβE
(1)
ni

]

= 0 (3.76)

This is just a set of homogeneous equations for the g unknown constants ciα. For non-trivial

solutions we must have:
∣

∣

∣

∣

〈φnβ |Ŵ |φnα〉 − δαβE
(1)
ni

∣

∣

∣

∣

= 0 (3.77)

This determinant yields a g−degree polynomial (with g roots, not necessarily all different). These

roots correspond to the 1st order correction to the energy E
(0)
n and the values of the ciα can be

determined by substituting the roots back into (3.76).

Problem 17: Given the Hamiltonian matrix H = H0 + W constructed using orthogonal basis

functions where

H =







20 0 0

0 20 0

0 0 30






+







0 1 0

1 0 2

0 2 0
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(a) Determine the exact eigenvalues.

Answer: The eigenvalues are 20.806, 18.805, and 30.389.

(b) Determine the eigenvalues correct to second order in the perturbation.

Answer: The eigenvalues, correct to second order, are 20.777, 18.818, and 30.404.

Problem 18: A particle of mass m moves in a two dimensional potential box where V (x, y) = 0

when 0 ≤ x ≤ a and 0 ≤ y ≤ a, otherwise V (x, y) = ∞.

(a) Determine the four lowest eigenvalues and display them on a diagram. Indicate the degen-

eracies.

Answer: h2

4ma2 , 5h2

8ma2 (×2), h2

ma2 , 5h2

4ma2 (×2).

(b) When the perturbation W (x) = bx2 is applied, the degeneracies are lifted. Assume that

Ŵ � Ĥ0 and determine the eigenvalues of the perturbed system to first order. Illustrate the

shifts on the diagram in part (a).

Answer: h2

4ma2 +a2b
(

1
3 − 1

2π2

)

, 5h2

8ma2 +a2b
(

1
3 − 1

2π2

)

, 5h2

8ma2 +a2b
(

1
3 − 1

8π2

)

, h2

ma2 +a2b
(

1
3 − 1

8π2

)

,

5h2

4ma2 + a2b
(

1
3 − 1

2π2

)

, 5h2

4ma2 + a2b
(

1
3 − 1

18π2

)

Problem 19: A particle of massm is constrained to move on the x−y plane so that the Hamiltonian

is:

Ĥ =
1

2m
(p̂2

x + p̂2
y) +

1

2
k(x̂2 + ŷ2) + ax̂ŷ

(a) Solve the problem for the case when a = 0. (This is just the two-dimensional harmonic

oscillator.)

(b) List the first few energy levels for the two-dimensional oscillator and give the degeneracies.

(c) Use degenerate perturbation theory to determine the energy splitting for the lowest degenerate

states and the first order corrections to the wave functions for these states when a 6= 0.

Answer: This problem will be done in class.

3.3.2 Time-dependent perturbation theory

In general, if the potential energy function is independent of time (V (r, t) = V (r)), then the

time-dependent Schrödinger equation:

ĤΨ = ih̄
∂Ψ

∂t
(3.78)
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is solved by separation of variables:

Ψ(r, t) = ψ(r)e−iEt/h̄ (3.79)

with ψ(r) the solution of the time-independent Schrödinger equation:

Ĥψ(r) = Eψ(r) (3.80)

These are called stationary states since all probabilities and expectation values calculated from

them are constant in time. To allow for transitions between energy levels, we must have a

time-dependent potential. Furthermore, if the time dependent part of the Hamiltonian is “small”

compared to the time-independent part, it can be treated as a perturbation.

Starting form the Hamiltonian,

Ĥ = Ĥ0 + Ŵ (r, t) (3.81)

we seek solutions of the time-dependent Schrödinger equation:

ih̄
∂|Ψ〉
∂t

= Ĥ|Ψ〉

=

(

Ĥ0 + Ŵ

)

|Ψ〉 (3.82)

Expanding |Ψ〉 in the orthonormal basis of Ĥ0 : {|ψn(r)〉}, we have:

|Ψ(r, t)〉 =
∑

k

e−iEkt/h̄ ck(t) |ψk〉 (3.83)

where

Ĥ0|ψk〉 = Ek|ψk〉 (3.84)

The quantity |ck(t)|2 is the probability of finding the system in state |ψk〉 at time t. Substituting

(3.83) into (3.82) we get:

ih̄
∂|Ψ〉
∂t

=
∑

k

Ek e
−iEkt/h̄ ck(t) |ψk〉 + ih̄

∑

k

e−iEkt/h̄ dck(t)

dt
|ψk〉

Ĥ|Ψ〉 =

(

Ĥ0 + Ŵ

)

|Ψ〉

=
∑

k

Eke
−iEkt/h̄ck(t)|ψk〉 +

∑

k

e−iEkt/h̄ ck(t) Ŵ |ψk〉 (3.85)

This gives:

ih̄
∑

k

e−iEkt/h̄ dck(t)

dt
|ψk〉 =

∑

k

e−iEkt/h̄ ck(t) Ŵ |ψk〉 (3.86)
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Multiplying (3.86) by 〈ψi| and using the orthonormality property we finally get:

ih̄
dci(t)

dt
=
∑

k

Wike
iωiktck(t) (3.87)

where

Wik(t) = 〈ψi(r)|Ŵ |ψk(r)〉

ωik =
Ei − Ek

h̄
(3.88)

Note that (3.87) can be written as:

dci(t)

dt
= − i

h̄
Wii ci(t) +

∑

k 6=i

Wik e
iωikt ck(t) (3.89)

Then, if Wik = 0 ∀i 6= k the above equation is easily solved:

ci(t) = ci(0) e
−iWiit/h̄ (3.90)

which indicates that |ci(t)|2 = |ci(0)|2, i.e. no transitions from the initial state i to other states

take place. Therefore for transitions to take place the perturbation must couple the

different eigenstates of Ĥ0.

We now develop the perturbation expansion of ci(t). Assume that the system is in state i at

time t = 0. Again introducing the parameter λ to isolate the various orders in the perturbation

expansion we have:

ci(t) = c
(0)
i (t) + λc

(1)
i (t) + λ2c

(2)
i (t) + . . .

Ŵ (t) → λŴ (t) (3.91)

Assume that the system is in state m at time t = 0:

ci(0) = δim = c
(0)
i (0) (3.92)

which also implies

c
(1)
i (0) = c

(2)
i (0) = . . . = 0 (3.93)

Substituting (3.91) into (3.87) and isolating the coefficients of the various powers in λ, we have:
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0th Order Term

dc
(0)
i (t)

dt
= 0

=⇒ c
(0)
i (t) = δim (3.94)

In 0th order, there are no transitions.

1st Order Term

dc
(1)
i (t)

dt
= − i

h̄

∑

k

Wik e
iωikt c

(0)
k (t)

= − i

h̄
Wim eiωimt

=⇒ c
(1)
i (t) = − i

h̄

∫ t

0
dt′ Wim(t′) eiωimt′ (3.95)

This procedure can be carried on for higher order terms. What is the probability that the system,

initially in state m, has made a transition to a state n by time t after the perturbation was switched

on? This transition probability is denoted by Pmn where:

Pmn(t) =

∣

∣

∣

∣

〈ψn|Ψ(r, t)〉
∣

∣

∣

∣

2

= |cn(t)|2 (3.96)

To 1st order we therefore have

Pmn(t) =
1

h̄2

∣

∣

∣

∣

∫ t

0
dt′ Wnm(t′) eiωnmt′

∣

∣

∣

∣

2

(3.97)

Fermi’s golden rule

We apply the formula for Pmn to study transitions into a continuous spectrum of final states.

Examples include α−decay (where the final states, characterised by the momenta of the emitted

α−particles, lie in a continuum) and optical transitions (a system in an excited state makes a

transition to a lower state by emitting a photon).

Consider a perturbation that is switched on at time t = 0 and subsequently remains unchanged.

Ŵ (r, t) = V (r) Θ(t) (3.98)
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where Θ(t) is the unit step function defined by:

Θ(t) = 1 t > 0

= 0 t < 0 (3.99)

The transition probability Pmn now becomes:

Pmn(t) =
1

h̄2

∣

∣

∣

∣

∫ t

0
dt′ Vnm eiωnmt′

∣

∣

∣

∣

2

=
|Vnm|2
h̄2

∣

∣

∣

∣

eiωnmt − 1

ωnm

∣

∣

∣

∣

2

=
|Vnm|2
h̄2

[

sin(ωnmt/2)

ωnm/2

]2

(3.100)

Using the following definition of the Dirac delta function:

lim
t→∞

sin2(αt)

πα2t
= δ(α) (3.101)

For long times, (3.100) becomes:

Pmn(t) = t
2π

h̄2 δ(ωnm) |Vnm|2

= t
2π

h̄
δ(En − Em) |Vnm|2 (3.102)

The transition rate Γnm is defined as the transition probability per unit time and is given by:

Γmn =
Pmn

t

=
2π

h̄
δ(En − Em) |Vnm|2 (3.103)

Since we are treating transitions into the continuum of final states, the transition rate to a group

of final states (whose energies are clustered around En) is of interest. Assume that the matrix

elements Vnm for all of these nearby final states are equal. Define ρf (En) as the density of final

states such that ρf (En)dEn gives the number of final states in the interval dEn about En. The

transition rate to this set of states is then:

Γ =
∑

n

Γmn =

∫

ρf (En)dEnΓmn =
2π

h̄
ρf (Em) |Vnm|2 (3.104)

Now consider the case of periodic perturbations where the perturbation has been switched on

at t = 0 and varies periodically with time. (An example is a periodic external field such as a EM

wave). In general:
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Ŵ (r, t) =

[

F̂ e−iωt + F̂ † e+iωt
]

Θ(t) (3.105)

where F̂ is an operator (independent of time). Substituting (3.105) into (3.97) gives:

Pmn(t) =
1

h̄2

∣

∣

∣

∣

∫ t

0
dt′ {ei(ωnm−ω)t′ Fnm + ei(ωnm+ω)t′ F †

nm}
∣

∣

∣

∣

2

Fnm = 〈ψn|F̂ |ψm〉

F †
nm = 〈ψn|F̂ †|ψm〉 (3.106)

For t→ ∞ we have

Pmn(t) = t
2π

h̄2

{

|Fnm|2δ(ωnm − ω) + |F †
nm|2δ(ωnm + ω)

}

(3.107)

Therefore the transition rate becomes

Γmn =
2π

h̄

{

|Fnm|2δ(En − Em − h̄ ω) + |F †
nm|2δ(En − Em + h̄ ω)

}

(3.108)

Problem 20: Verify (3.107). Note that the two delta functions do not overlap so the cross terms

in the square of the modulus do not contribute.

Problem 21: A hydrogen atom is placed in an electric field E(t) that is uniform and has the time

dependence

E(t) =







0 t < 0

E0e
−γt t > 0

What is the probability that as t → ∞, the hydrogen atom, if initially in the ground state, makes

a transition to the 2p state?

Answer: The transition probability for 1s→ 2p is

e2E2
0

|〈ψ210|z|ψ100〉|2
(E210 − E100)2 + h̄2γ2

Problem 22: Consider a harmonic oscillator described by

Ĥ =
1

2m
p̂2

x +
1

2
mω2(t)x̂2

where

ω(t) = ω0 + δω cos(ft)
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and δω � ω0. Calculate the probability that a transition occurs from the ground state, as a

function of time, given the system is in the ground state at t = 0.

Answer: To be done in class.

Problem 23: Consider a two-level system with E1 < E2. There is a time-dependent potential

that connects the two levels as follows:

V11 = V22 = 0, V12 = γeiωt, V21 = γe−iωt (3.109)

where γ is real. At t = 0, it is known that only the lower level is populated — that is, c1(0) =

1, c2(0) = 0.

(a) Find |c1(t)|2 and |c2(t)|2 for t > 0 by exactly solving the coupled differential equation

ih̄ċk =
2
∑

n=1

Vkn(t)eiωkntcn

for k = 1, 2.

(b) Do the same problem using time-dependent perturbation theory to lowest non vanishing order.

Compare the two approaches for small values of γ. Treat the following two cases separately:

(i) ω very different from ω12 and (ii) ω close to ω12.

3.4 JWKB method

The JWKB (Jeffreys, Wentzel, Kramers, Brillouin) method is a semi-classical technique for ob-

taining approximate solutions to the one-dimensional Schrödinger equation. It is mainly used in

calculating bound-state energies and tunnelling rates through potential barriers, and is valid in the

limit λ = h
p = h

mv → 0 or h̄ → 0 or m → ∞ where m is the mass of the particle, p its momentum

etc.

The key idea is as follows. Imagine a particle of energy E moving through a region where the

potential V (x) is constant. If E > V , the wave function is of the form

ψ(x) = A e±ikx

k =

√

2m(E − V )

h̄

The plus sign indicates particles travelling to the right etc. The wave function is oscillatory, with

constant wavelength λ = 2π/k, and has constant amplitude, A. Consider now the case where
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V (x) is not a constant but varies rather slowly in comparison to λ (so that in a region containing

many wavelengths the potentially is essentially constant). Then it is reasonable to suppose that

ψ remains practically sinusoidal except that the wavelength and the amplitude change slowly with

x. This is the central theme of the JWKB method: rapid oscillations are modulated by gradual

variation in amplitude and wavelength.

Similarly, if E < V (with V a constant), then ψ is exponential:

ψ(x) = A e±Kx

K =

√

2m(V − E)

h̄

Now, if V (x) is not constant but again varies slowly in comparison to 1/K, the solution remains

practically exponential except that A and K are now slowly varying functions of x.

There are of course places where this idea breaks down, e.g. in the vicinity of a classical turning

point where E ≈ V . Here, λ (or 1/K) goes to infinity and V (x) can hardly be said to vary “slowly”!

Proper handling of this is the most difficult aspect of the JWKB approximation but the final results

are simple and easy to implement.

3.4.1 Derivation

We seek to solve

d2ψ

dx2
+ k2(x)ψ(x) = 0

k2(x) =
2m

h̄2 (E − V (x)) (3.110)

The semi-classical limit corresponds to k large. If k were constant, then of course the solutions

would just be e±ikx. This suggests that we try ψ(x) = eiS(x), where in general S(x) is a complex

function. Then,

dψ

dx
= iS′eiS

d2ψ

dx2
= (iS′′ − S′2)eiS (3.111)

and the Schrödinger equation reduces to (iS ′′ − S′2 + k2)eiS = 0, or

S′ = ±
√

k2(x) + iS′′(x)

= ±k(x)
√

1 + iS′′(x)/k2 (3.112)
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(Note that if k were a constant, S ′′ = 0 and S′ = ±k.)

We now attempt to solve the above equation by iteration, using S ′ = ±k as the first guess, and as

a second guess we use:

S′ = ±k
√

1 ± ik′(x)/k2

≈ ±k
(

1 ± i

2

k′(x)
k2

)

≈ ±k +
i

2

k′(x)
k

(3.113)

where we have assumed that the corrections are small. Then, we have

dS

dx
= ±k +

i

2

k′

k

S(x) ∼ ±
∫ x

k(x)dx+
i

2

∫ x k′

k
dx+ c (3.114)

The second integral is a perfect differential (d ln k), so

S(x) = ±
∫ x

k(x)dx+
i

2
ln k + c

ψ = eiS

= C e±i
∫ x

k(x)dxe−
1

2
ln k

=
C

√

k(x)
e±i

∫ x
k(x)dx (3.115)

Note that in making the expansion, we have assumed that k′

k2 � 1 or λ
2π

dk
dx � k, i.e. that the change

in k in one wavelength is much smaller than k. Alternatively, one has λ dV
dx � h̄2k2

m so that the

change in V in one wavelength is much smaller than the local kinetic energy.

Note that in the classically forbidden regions, k2 < 0, one puts k = iK(x) and carries through the

above derivation to get

ψ(x) =
C

√

K(x)
e±
∫ x

K(x)dx

K2 =
2m

h̄2 (V − E) > 0 (3.116)



3.4. JWKB METHOD 99

3.4.2 Connection formulae

In our discussion above, it was emphasised that the JWKB method works when the “short wave-

length approximation” holds. This of course breaks down when we hit the classical turning points

where k2(x) = 0 (which happens when E = V ). To overcome this problem, we will derive below

equations relating the forms of the solution to both sides of the turning point.

If the potential can be approximated by an increasing linear potential near the turning point x = a

(the region x > a being classically forbidden), we can write in the vicinity of the turning point

k2(x) =
2m

h̄2

(

− ∂V

∂x

)

x=a
(x− a) (3.117)

(If we have a potential which cannot be approximated linearly, we must resort to approximations

with a quadratic term and find a solution in terms of parabolic cylinder functions. We will not go

into the details of this case but you can look it up if you are interested.) The Schrödinger equation

near the turning point becomes

ψ′′ −
(

∂V

∂x

)

x=a

2m

h̄2 (x− a)ψ = 0 (3.118)

This is a linear potential problem which is solved in terms of Airy functions. If we let

y = α(a− x) ≥ 0

α3 =
2m

h̄2

∂V

∂x
≥ 0 (3.119)

then the above differential equation becomes

ψ′′(y) + y ψ(y) = 0 (3.120)

whose solutions are:

ψ = A
√
yJ− 1

3

(z) +B
√
yJ+ 1

3

(z)

z =
2

3
y

3

2

=

∫ a

x
k(x) dx (3.121)

The procedure is now to make asymptotic expansions for the Bessel functions, match them onto the

JWKB solutions in the classically allowed and forbidden regions and thus obtain formulae relating

the solutions in the two regions.
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For the case y → ∞, i.e. x� a, deep inside the allowed region, we have

Jν →
√

2

πz
cos

(

z − νπ

2
− π

4

)

ψ →
√

2

πz

[

A
√
y cos

(

z +
π

6
− π

4

)

+B
√
y cos

(

z − π

6
− π

4

)]

(3.122)

i.e. it oscillates as does the JWKB solution in the left region.

If y → 0, i.e. when x→ a, near the turning point, we have

Jν ∼

(

z
2

)ν

Γ(ν + 1)

ψ → A
√
y(1

2z)
−1/3

Γ(2
3)

+
B
√
y(1

2z)
1/3

Γ(4
3)

(3.123)

Since we know that y = k2

α and z =
∫ a
x k(x) dx = 2

3
k3

α3/2
, these can be written as

ψleft(y → ∞;x� a) →
√

3

π

α1/4

√

k(x)

[

A cos

(∫ a

x
k(x) dx− π

12

)

+ B cos

(∫ a

x
k(x) dx+

5π

12

)]

ψleft(near x = a) → A 31/3

Γ(2
3)

+
By

Γ(4
3) 31/3

(3.124)

We now follow a similar procedure in the classically forbidden region, x > a. Let y = α(x−a) > 0.

The Schrödinger equation now becomes ψ′′ − yψ = 0, which has solutions:

ψ = C
√
y I 1

3

(z) +D
√
y I− 1

3

(z)

z =

∫ x

a
K(x) dx

K2(x) =
2m

h̄2

(

V (x) − E

)

(3.125)

The I ′s are Bessel functions of imaginary argument.

When the same steps described in detail above are followed, we find

ψright(x� a) →
√

3

4π

C α1/4

√

K(x)

[

e
∫ x

a
K(x) dx + e−

∫ x

a
K(x) dx e−i 5π

6

]
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+

√

3

4π

D α1/4

√

K(x)

[

e
∫ x

a
K(x) dx + e−

∫ x

a
K(x) dx ei

5π
6

]

ψright(near x = a) → D 31/3

Γ(2
3)

+
Cy

Γ(4
3) 31/3

(3.126)

We now match these two sets of solutions near x = a. Matching the functions at y = 0 gives us

D = A; matching derivatives gives us B = −C. If we let A = 1, B = 0, we find that the cosine

solutions to the left correspond to dying exponentials to the right. If we manipulate the constant

factors in the above asymptotic solutions, we finally find the connection formulae:

2
√

k(x)
cos

[ ∫ a

x
k(x) dx− π

4

]

⇐⇒ 1
√

K(x)
e−
∫ x

a
K(x) dx

1
√

k(x)
sin

[ ∫ a

x
k(x) dx− π

4

]

⇐⇒ − 1
√

K(x)
e
∫ x

a
K(x) dx (3.127)

This allow a continuation of solutions. A sine solution on the left matches into a −e+
∫ x

a
K(x) dx

solution on the right. Similar formulae for the reverse situation with the turning point on the left

(x < b classically forbidden) give

1
√

K(x)
e−
∫ b

x
K(x) dx ⇐⇒ 2

√

k(x)
cos

[ ∫ x

b
k(x) dx− π

4

]

1
√

K(x)
e
∫ b

x
K(x) dx ⇐⇒ − 1

√

k(x)
sin

[ ∫ x

b
k(x) dx− π

4

]

(3.128)

Problem 24: Verify Eq. (3.127).

3.4.3 *JWKB treatment of the bound state problem

Given an arbitrary potential V (x), we wish to find the approximate eigenstates. Effectively, this

means that we must find energies such that the JWKB solutions in the potential well match onto

dying exponentials in the classically forbidden regions (i.e. ψ → 0 as x → ± ∞). Consider a

potential as shown in the figure below:
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b a

V

E

Far to the left, we will have (as x→ −∞):

ψleft =
const
√

K(x)
e
∫ x

b
K(x) dx → 0 (3.129)

Inside the potential well, this matches to:

ψinside =
2 · const
√

k(x)
cos

(∫ x

b
k(x) dx− π

4

)

(3.130)

We now move along to the next turning point x = a. Rewriting ψ inside (for easy matching) as:

ψinside =
2 · const
√

k(x)
cos

(∫ a

b
k(x) dx−

∫ a

x
k(x) dx− π

4

)

(3.131)

We define

φ =

∫ a

b
k(x) dx (3.132)

and applying the connection formulae developed in the previous section, we get

ψinside =
2 · const
√

k(x)
cos

[

−
∫ a

x
k(x) dx+ φ− π

2
+
π

4

]

=
2 · const
√

k(x)

[

cos

(

φ− π

2

)

cos

(∫ a

x
k(x) dx− π

4

)

− sin

(

π

2
− φ

)

sin

(∫ a

x
k(x) dx− π

4

)]

(3.133)

The cos solution matches onto the dying exponential, but the sine matches onto a growing expo-

nential. Thus, its coefficient must be zero; i.e. sin(π
2 − φ) = 0 or π

2 − φ = −nπ or

∫ a

b
k(x) dx = (n+

1

2
)π (3.134)
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This is similar to the Bohr-Sommerfeld Quantization Rule, but with n shifted by 1
2 . This

matching may need to be done many times if we have a complicated potential such as:

Problem 25†: Show that Eq. (3.134) gives the exact energy levels of a simple harmonic oscillator.

3.4.4 Barrier penetration

Given a potential like that shown below:

a b

we know that classically there is no probability of getting through the barrier. However, from

quantum mechanics we find that an incoming wave function of magnitude A will give rise to a

reflected wave function of magnitude B, and a transmitted wave function of magnitude F such

that

ψleft =
A√
k
ei
∫ x

a
k(x) dx +

B√
k
e−i

∫ x

a
k(x) dx

ψmiddle =
C√
K

e−
∫ x

a
K(x) dx +

D√
K

e
∫ x

a
K(x) dx
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ψright =
F√
k
ei
∫ x

b
k(x) dx +

G√
k
e−i

∫ x

b
k(x) dx (3.135)

Obviously we will set G = 0 at the end (there is no wave coming in from the right). First match

at the turning point x = a. We do this by rewriting ψleft in such a form as to use the connection

formulae:

ψleft = (A e−i π
4 +B ei

π
4 )

1√
k

cos

(∫ a

x
k(x) dx− π

4

)

+ i (−A e−i π
4 +B ei

π
4 )

1√
k

sin

(∫ a

x
k(x) dx− π

4

)

(3.136)

On applying the connection formula, we find:

A e−i π
4 +B ei

π
4 = 2 C

−i B ei π
4 + i A e−i π

4 = D (3.137)

We do the same at the next turning point (x = b). Rewrite ψmiddle as

ψmiddle =
C√
K

Θ−1 e
∫ b

x
K(x) dx +

D√
K

Θ e−
∫ b

x
K(x) dx

Θ = e
∫ b

a
K(x) dx (3.138)

which on matching yields:

F ei
π
4 +G e−i π

4 = 2 D Θ

i (F ei π
4 −G e−i π

4 ) = −C
Θ

(3.139)

These relations can be written in a simple matrix notation as:




C

D



 =
1

2

(

e−i π
4 ei

π
4

i 2 e−i π
4 −i 2 ei π

4

)





A

B









C

D



 =

(

−i Θ ei π
4 i Θ e−i π

4

1
2Θ ei

π
4

1
2Θ e−i π

4

)





F

G



 (3.140)

After some matrix algebra we get




A

B



 = T





F

G





T =
1

2

(

2 Θ + 1
2Θ i (2 Θ − 1

2Θ)

−i (2 Θ − 1
2Θ) 2 Θ + 1

2Θ

)

(3.141)



3.4. JWKB METHOD 105

where the matrix T is called the Transfer matrix. If we letG = 0, then we find A = 1
2 (2 Θ+ 1

2Θ) F

or

∣

∣

∣

∣

F

A

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

Θ + 1
4Θ

∣

∣

∣

∣

2

(3.142)

∼ Θ−2 for large Θ.

Therefore for large Θ the transmission coefficient will be

T ≡
∣

∣

∣

∣

F

A

∣

∣

∣

∣

2

∼ Θ−2 = e−2
∫ b

a
K(x) dx (3.143)

Problem 26: Verify Eq. (3.142).

Problem 27: Consider a particle with total energy E = 0 moving in the anharmonic oscillator

potential

V (x) =
1

2
mω2(x2 − εx4)

Show that, for small ε, the transmission coefficient of the potential barrier between x = 0 and

x = 1/
√
ε is

T ∼ e−2mω/3h̄ε .

(Notice that this result cannot be obtained using perturbation theory, since the function on the

r.h.s. does not have a power series expansion in ε.)

3.4.5 Alpha decay of nuclei

The potential that the alpha particle sees is shown below:
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E

rR

We assume that Z is the atomic number of the final nucleus, R is the nuclear radius and the

potential is given by:

V (r) =
2Ze2

r
r > R (3.144)

i.e. the potential is Coulombic outside the nucleus. Let the energy of the alpha particle be E and

define r0 = 2Ze2

E . We need to evaluate

I =
1√
E

∫ r0

R

(

2Ze2

r
− E

)
1

2

dr

=

∫ γR

R

(

γR

r
− 1

)
1

2

dr

γ =
2Ze2

ER
(3.145)

Substitute

r

γR
= sin2 θ

dr = 2γR sin θ cos θ dθ

θ0 = sin−1 1√
γ

(3.146)
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into the above integral to get

I = 2γR

∫ π
2

θ0

cos2 θ dθ

= γR

[

π

2
− sin−1 1√

γ
− (γ − 1)2

γ

]

(3.147)

Since the transmission coefficient is given by T ∼ e−2
∫ b

a
K(x) dx where K2(x) = 2m

h̄2 (V (r) − E) we

get

lnT = −2

√
2m

h̄
I
√
E (3.148)

For the case that E � 2Ze2

R , γ � 1 and I ∼ γR[π
2 − 1√

γ ], so we get

T = A e−β

β = π

√
2m

h̄

(

2Ze2√
E

)

A = e−
4

h̄

√
Ze2mR (3.149)

Every time the alpha particle is incident on the barrier, it has a probability T to escape. To find

the probability per unit time (Γ) to escape, we multiply by ω, the frequency of oscillation of an

alpha particle in the well of radius R, i.e.

Γ = ω A e−β (3.150)

We estimate ω as follows:

ω ' v

R

∼= ∆p

mR

∼= h̄

2mR2
(3.151)

For R = 10 fm, one finds ω = 1020 sec, taking Z = 90, then A = 6 × 10−19 and β = 182√
E

for E in

MeV. So we have

Γ ∼ 0.6 e−182/
√

E × 1040 sec−1 (E in MeV) (3.152)

Note that although our approximation is crude (since it is not really true that γ � 1), from the

above equation, one finds a very strong variation in Γ as a function of E. For example, doubling

E from 4 to 8 MeV increases the value of Γ by eleven orders of magnitude!
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Chapter 4

Scattering Theory

4.1 Introduction

The path of a moving (incident) particle is altered when it interacts with another (target) particle,

such as an atom or a molecule. Phenomena of this sort are generally called scattering. Scattering

is called elastic when the identities and internal properties of the incident particle and the target

remain unchanged after the collision, and inelastic when the identities or internal properties change

or when other particles are emitted or the two particles form a bound state. Analyses of scattering

give information on the structure and interactions of atoms, molecules, and elementary particles.

We first review the solution to the time independent Schrödinger equation for the spherically

symmetric square well to develop the concepts for the general case of scattering from an arbitrary

potential.

4.2 Spherically symmetric square well

The potential is defined by:

V (r) =

{

−V0 r ≤ a;

0, r > a.
(4.1)

where V0 > 0. An incident particle will feel an attractive potential when it is within the spherical

region of radius r ≤ a. Note that this potential is spherically symmetric i.e. it depends only on the

distance from the origin. The time independent Schrödinger equation is:

[

− h̄2

2m
∇2 + V (r)

]

Ψ(r) = EΨ(r) (4.2)

109
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Since we have spherical symmetry, we use the method of separation of variables to write Ψ(r) as:

Ψ(r) = Rl(r) Ylm(θ, ϕ) (4.3)

where the Ylm(θ, ϕ) are the Spherical Harmonics and the Rl(r) are the solutions to:

[

− h̄2

2m

(

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)

+ V (r)

]

Rl(r) = E Rl(r) (4.4)

Suppose the energy of the incident particles E are such that (E > V ∀r). Define

k =
√

2m(E − V )/h̄

Then (4.4) becomes:
[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2

]

Rl(r) = 0 (4.5)

Substituting ρ = kr into (4.5) gives

[

d2

dρ2
+

2

ρ

d

dρ
− l(l + 1)

ρ2
+ 1

]

Rl(ρ) = 0 (4.6)

The general solution to (4.6) are the spherical Bessel functions, jl(ρ) and the spherical Neu-

mann functions nl(ρ):

Rl(ρ) = Ajl(ρ) +Bnl(ρ) (4.7)

(The mathematical properties of these functions are discussed in the next section).

When there is no potential (free particle case), the solution to (4.6) which is regular at the origin,

involves only the spherical Bessel function:

Rl(r) = Ajl(kr) (4.8)

where now, k =
√

2mE/h̄. The asymptotic behaviour of this solution far from the origin is:

Rl(r) −→
r → ∞

A
sin(kr − lπ/2)

kr
(4.9)

If we now have the potential (4.1) acting, with E > 0 then the solution to (4.6) take the form:

Rl(r) =

{

Ajl(qr) r < a;

Bjl(kr) + Cnl(kr), r > a.

where A, B and C are constants to be determined from the boundary conditions and

k =
√

2mE/h̄

q =
√

2m(E + V0)/h̄ (4.10)
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From the continuity conditions (i.e. both Rl(r) and its first derivative must be continuous at r = a),

we have

q
j′l(qr)
jl(qr)

∣

∣

∣

∣

r=a
= k

[

Bj′l(kr) + Cn′l(kr)
Bjl(kr) + Cnl(kr)

]

r=a
(4.11)

from which we can get the ratio C/B. The asymptotic form (see next section) of the solution for

the symmetric spherical well (for r � a) is

Rl(r) −→
r → ∞

B

kr

[

sin

(

kr − lπ

2

)

− C

B
cos

(

kr − lπ

2

)]

(4.12)

Introducing
C

B
= − tan δl(k) (4.13)

the above asymptotic form reduces to:

Rl(r) −→
r → ∞

B

cos δl(k)

1

kr

[

sin

(

kr − lπ

2
+ δl(k)

)]

(4.14)

Comparing this with the solution to the free particle case (4.9), we find that the presence of the

potential induces a phase shift δl(k), which depends of the value of l, the energy of the incident

particle (through k) and the strength of the potential (since C/B and therefore δl(k) depends on

q).

Problem 1: Show that for l = 0 i.e. s-wave scattering, the value of the phase-shift, δ0(k) is

determined by:

q cot qa = k cot(ka+ δ0(k)) (4.15)

and hence

δ0(k) = arctan

(

k

q
tan qa

)

− ka (4.16)

4.3 Mathematical interlude

In this section we will review some mathematical tools needed in our study of the quantum mechan-

ical scattering problem. For a more detailed account of the topics discussed here, refer to Arfken’s

book, “Mathematical Methods for Physicists”, Third Edition, which is in the Rayleigh Library.

4.3.1 Brief review of complex analysis

• Analytic functions: A function f of the complex variable z = x + iy, defined in some

region D of the complex plane, is said to be analytic if it satisfies the Cauchy-Riemann
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conditions. Specifically,

f(z) = u(x, y) + i v(x, y)

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

(4.17)

Analytic functions have some very important properties among which is that their derivatives

to all orders exist and are also analytic.

• Cauchy theorem: If f(z) is analytic in a simply connected domain D, and if C is a simply

closed curve in D, then
∮

C
f(z) dz = 0

which can be proved by applying the Cauchy-Riemann conditions. Note that this result is

independent of the contour C.

• Cauchy integral formula: If f(z) is analytic in a simply connected domain D, and if C is

a simply closed curve in D, then

∮

C

f(z)

z − z0
dz =







2πif(z0) if z0 ∈ D
0 otherwise

• Residue theorem: Let f(z) be analytic in some neighbourhood of z = z0, and let C be a

simple closed contour lying in this neighbourhood and surrounding z = z0. The quantity

1

2πi

∮

C
f(z)dz = Resf(z0)

is independent of the choice of C and is called the residue of f(z) at the point z = z0.

Evaluating many line integrals can therefore be reduced to simply finding the residue.

• Isolated singularity: A function f(z), analytic in the neighbourhood of z = z0 with the

exception of the point z = z0 itself, is said to have an isolated singularity at z = z0. If there

are a finite number of isolated singularities at z = zi within C, then the integral is given by

the sum of residues,
∮

C
f(z)dz = 2πi

∑

i

Resf(zi)
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• Laurent series: If f(z) is analytic over a region r1 < |z − z0| < r2, it may be represented

there by a generalisation of Taylor’s series called a Laurent series:

f(z) =
∞
∑

n=−∞
An(z − z0)

n

where the expansion coefficients are given by

An =
1

2πi

∮

C

f(z)

(z − z0)n+1
dz

Then Resf(z0) is equal to the coefficient A−1.

Example: The function f(z) = exp(z) + exp(1/z) − 1 is analytic for |z| > 0 and has Laurent

expansion

f(z) =
∞
∑

n=−∞

1

|n|!z
n

Therefore in this case Resf(0) = 1.

4.3.2 Properties of spherical Bessel/Neumann functions

The spherical Bessel/Neumann functions are the solutions to the 2nd−order linear differential

equation (4.6):

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l(sin ρ

ρ

)

nl(ρ) = −(−ρ)l
(

1

ρ

d

dρ

)l(cos ρ

ρ

)

(4.18)

where l = 0, 1, 2, . . .. They can be expressed by the ascending power series

jl(ρ) =
ρl

(2l + 1)!!

[

1 −
1
2ρ

2

1!(2l + 3)
+

(1
2ρ

2)2

2!(2l + 3)(2l + 5)
− · · ·

]

nl(ρ) = −(2l − 1)!!

ρl+1

[

1 −
1
2ρ

2

1!(1 − 2l)
+

(1
2ρ

2)2

2!(1 − 2l)(3 − 2l)
− · · ·

]

(4.19)

where (2l + 1)!! = 1 · 3 · 5 · · · (2l + 1).

The spherical Hankel functions h
(1)
l (ρ) and h

(2)
l (ρ) are defined in terms of jl and nl:

h
(1)
l (ρ) = jl(ρ) + inl(ρ)

h
(2)
l (ρ) = [h

(1)
l (ρ)]∗ (4.20)
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The explicit forms for the first few values of l are:

j0(ρ) =
sin ρ

ρ

n0(ρ) = −cos ρ

ρ

h
(1)
0 (ρ) =

eiρ

iρ

j1(ρ) =
sin ρ

ρ2
− cos ρ

ρ

n1(ρ) = −cos ρ

ρ2
− sin ρ

ρ

h
(1)
1 (ρ) = −e

iρ

ρ

(

1 +
i

ρ

)

(4.21)

Note that in general, nl(ρ) is singular (i.e. diverges) at the origin (while jl(ρ) is regular). This

means that if the interval over which the solution to (4.6) is sought includes the origin, then we

have to drop the nl(ρ) part. All the functions and their first derivatives defined above satisfy the

following recursion formulae:

2l + 1

ρ
zl(ρ) = zl−1(ρ) + zl+1(ρ)

z
′

l(ρ) =
1

(2l + 1)

[

lzl−1(ρ) − (l + 1)zl+1(ρ)

]

(4.22)

where the zl(ρ) are any of the functions jl(ρ), nl(ρ), h
(1)
l (ρ), h

(2)
l (ρ). The spherical Bessel functions

have the integral representation:

jl(ρ) =
(−i)l

2

∫ 1

−1
dzPl(z)e

iρz (4.23)

where the Pl(z) are the Legendre polynomials. (You can easily verify this for l = 0, 1 etc. This

formula will be used later when we derive the expansion of plane-waves in terms of spherical waves).

The functions have the following asymptotic behaviour:

For small arguments (ρ� 1, l):

jl(ρ) → ρl

(2l + 1)!!

nl(ρ) → −(2l − 1)!!

ρl+1
(4.24)
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For large arguments (ρ� l):

jl(ρ) → 1

ρ
sin

(

ρ− lπ

2

)

nl(ρ) → −1

ρ
cos

(

ρ− lπ

2

)

h
(1)
l (ρ) → − i

ρ
ei(ρ−lπ/2) (4.25)

4.3.3 Expansion of plane waves in spherical harmonics

In this section, we derive a formula relating a plane wave to an expansion involving the spherical

Bessel functions and the spherical harmonics. This will be used later in the partial-wave analysis

of spherically symmetric potentials.

The set of spherical wave solutions to the free particle Schrödinger equation, {jl(kr)} is complete.

We can therefore expand a plane wave, given by eik·r in terms of these solutions:

eik·r =
∞
∑

l=0

l
∑

m=−l

clm(k) jl(kr) Ylm(θ, ϕ) (4.26)

where the expansion coefficients clm(k) are to be determined.

First let k point along the z-axis and let θ be the angle between r and the z-axis. Then we have

k · r = kr cos θ

Note that there is no ϕ dependence as we have azimuthal symmetry about the z-axis. This implies

that

clm(k) → Al

Ylm(θ, ϕ) →
[

2l + 1

4π

]
1

2

Pl(cos θ) (4.27)

and

eikr cos θ =
∞
∑

l=0

Al

[

2l + 1

4π

] 1

2

jl(kr) Pl(cos θ) (4.28)

Using the orthonormality of the Legendre polynomials:

∫ 1

−1
d cos θ Pl(cos θ)Pl′(cos θ) =

2

2l + 1
δll′ (4.29)
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we have

Al jl(kr) =
1

2
[4π(2l + 1)]

1

2

∫ 1

−1
dzPl(z)e

ikrz (4.30)

where z = cos θ. Using the integral representation of the spherical Bessel function, (4.30) reduces

to

Al = il [4π(2l + 1)]
1

2 (4.31)

Therefore (4.26) becomes:

eikr cos θ =
∞
∑

l=0

il (2l + 1) jl(kr) Pl(cos θ) (4.32)

For an arbitrary k, all we need to do to generalise (4.32) is use the addition theorem of spherical

harmonics. If θ is the angle between the vectors k and r then this theorem tells us that:

Pl(cos θ) =
4π

2l + 1

l
∑

m=−l

Y ∗
lm(Ωk) Ylm(Ωr) (4.33)

where Ωk ≡ (θk, ϕk) and Ωr ≡ (θr, ϕr). Substituting (4.33) into (4.32) gives the general expansion:

eik·r = 4π
∞
∑

l=0

l
∑

m=−l

il jl(kr) Y
∗
lm(Ωk) Ylm(Ωr) (4.34)

4.4 The quantum mechanical scattering problem

In a typical scattering experiment, one might measure the number of particles that are scattered

by an angle (θ, ϕ) into the element dΩ of the solid angle. The differential cross section dσ
dΩ is

defined by:

dσ

dΩ
dΩ =

number of particles scattered into dΩ per unit time

number of incident particles crossing unit area per unit time

In terms of the incident and scattered fluxes of particles we have:

dσ

dΩ
dΩ =

r2dΩ|jscatt|2
|jincid|2

(4.35)

where jincid and jscatt are the incident and scattered flux densities respectively. The total cross

section σtot is given by

σtot =

∫

unit sphere

dσ

dΩ
dΩ

=

∫ 2π

0
dϕ

∫ 1

−1
d cos θ

dσ

dΩ
(4.36)
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The experimental setup is such that we have a beam of particles incident from z = −∞ travelling in

the +z direction (characterised by a plane-wave eikz) scattered by the target particles (represented

mathematically by a potential V (r)), so that we have a spherical wave that emanates from the target

that describes the scattered particles. We therefore seek a solution to the Schrödinger equation

that has the asymptotic form:

ψ(r) −→
r → ∞

eikz + f(θ, ϕ)
eikr

r
(4.37)

The function f(θ, ϕ) is called the scattering amplitude and is related to the differential cross

section by:
dσ

dΩ
= |f(θ, ϕ)|2 (4.38)

Partial wave analysis

We now apply the tools developed in the previous sections to study scattering from a spherically

symmetric potential V (r). We assume that V (r) is short ranged in the sense that:
∣

∣

∣

∣

∫ ∞

0
r2V (r) dr

∣

∣

∣

∣

<∞ (4.39)

(This ensures that we not only have a well defined scattering problem but also ensures the con-

vergence of the various expressions we shall encounter below.) The time independent Schrödinger

equation (4.2) for a particle in such a spherically symmetric potential is given by:

[∇2 + k2 − U(r)]ψ(r) = 0

U(r) =
2mV (r)

h̄2

k2 =
2mE

h̄2 (4.40)

We now decompose the ψ(r) into spherical waves:

ψ(r) =
∞
∑

l=0

il (2l + 1) Rl(r) Pl(cos θ) (4.41)

where we have taken advantage of the spherical symmetry of V (r). Substituting (4.41) into (4.40)

gives the radial equation for Rl(r)

[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2 − U(r)

]

Rl(r) = 0 (4.42)

The boundary condition for Rl(r) is that for r → 0, we want Rl(r) to be finite. Equation (4.42)

reduces for r → 0 to
[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

]

Rl(r) = 0 (4.43)
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and the solution that is finite at the origin is

Rl(r) −→
r → 0

Arl (4.44)

The remaining boundary condition is determined by the physics of the situation. For an incoming

beam eik·r (where it is understood that k points along the +z-axis), we have

eik·r =
∞
∑

l=0

il (2l + 1)jl(kr) Pl(cos θ)

=
1

2

∞
∑

l=0

il(2l + 1)

[

h
(2)
l (kr) + h

(1)
l (kr)

]

Pl(cos θ) (4.45)

The effect of the potential is to cause scattering and hence to modify the amplitude of each of the

outgoing spherical waves. Therefore, asymptotically, the full solution must be of the form

ψ(r) −→
r → ∞

∞
∑

l=0

il (2l + 1)
1

2

[

h
(2)
l (kr) + Sl(k)h

(1)
l (kr)

]

Pl(cos θ) (4.46)

where Sl contains the total effect of the scattering. (Note that we have incorporated into (4.46) the

fact that, for r → ∞, ψ(r) must satisfy the free particle Schrödinger equation due to the short-range

nature of the scattering potential as well as the fact that the scattering effects only the outgoing

spherical waves.) Equation (4.46) can now be rewritten as:

ψ(r) −→
r → ∞

1

2

∞
∑

l=0

il (2l + 1)

[

h
(1)
l (kr) + h

(2)
l (kr) + [Sl(k) − 1]h

(1)
l (kr)

]

Pl(cos θ)

=
∞
∑

l=0

il(2l + 1)

{

jl(kr) +
1

2
[Sl(k) − 1]h

(1)
l (kr)

}

Pl(cos θ)

= eik·r +
∞
∑

l=0

il (2l + 1)
1

2
[Sl(k) − 1] h

(1)
l (kr) Pl(cos θ) (4.47)

Since this is the solution for large r, we replace h
(1)
l (kr) by its asymptotic form to get the final

asymptotic form for ψ(r)

ψ(r) −→
r → ∞

eik·r + f(θ)
eikr

r
(4.48)

where

f(θ) =
1

2ik

∞
∑

l=0

(2l + 1) [Sl(k) − 1] Pl(cos θ) (4.49)

(Note that f(θ) also depends on the energy of the incident particle). Since from (4.38), the dif-

ferential cross section dσ
dΩ depends only on the scattering amplitude f(θ), our scattering problem
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will be solved if we find the f(θ) or alternatively the Sl(k). The complex numbers Sl(k) can be

expressed in terms of real numbers δl(k) called phase shifts which are defined by

Sl(k) = e2iδl(k) (4.50)

(The factor of 2 is conventional). Using this definition of the phase-shifts, the scattering amplitude

(4.49) reduces to,

f(θ) =
1

k

∞
∑

l=0

(2l + 1) eiδl(k) sin δl(k) Pl(cos θ) (4.51)

and the differential cross section is

dσ

dΩ
= |f(θ)|2

=
1

k2

∞
∑

l=0

∞
∑

l′=0

(2l + 1) (2l′ + 1) sin δl sin δl′ cos(δl − δl′) Pl(cos θ) Pl′(cos θ) (4.52)

The total cross section, σtot is given by

σtot =

∫

unit sphere

dσ

dΩ
dΩ

=
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl (4.53)

Problem 2: Verify equation (4.53).

The total cross section can also be written as

σtot =
∞
∑

l=0

σl (4.54)

where the lth partial cross section σl is given by

σl =
4π

k2
(2l + 1) sin2 δl (4.55)

For elastic scattering, the phase shifts are real so it follows from (4.55) that for elastic scattering

σl ≤
4π

k2
(2l + 1) (4.56)

The value 4π(2l + 1)/k2 is known as the unitarity bound and is reached only for

δl =

(

n+
1

2

)

π , (n = 0, 1, . . .) (4.57)
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This is the condition for resonance which shows up as a local maximum in the cross section for

the corresponding partial wave.

On the other hand,

Imf(θ) =
1

2k

∞
∑

l=0

(2l + 1) Re[1 − Sl] Pl(cos θ)

=
1

2k

∞
∑

l=0

(2l + 1) [2 sin2 δl] Pl(cos θ) (4.58)

Setting θ = 0 and making use of Pl(1) = 1, we get

Imf(θ = 0) =
1

k

∞
∑

l=0

(2l + 1) sin2 δl (4.59)

Comparing this with (4.53), we obtain the optical theorem:

σtot =
4π

k
Imf(θ = 0) (4.60)

Problem 3: Consider the elastic scattering of a low energy particle from a “hard sphere” potential

(V (r) = ∞ for r ≤ a, 0 otherwise.) Derive an expression for tan δl and show that for l = 0,

tan δ0 = − tan(ka) where k2 = 2mE/h̄2. Show that as k → 0 the total cross section approaches

4πa2. Hence obtain an expression for the s-wave contribution to the forward scattering amplitude

f(θ = 0) and verify the optical theorem for ka� 1.

4.4.1 Born approximation

Another technique for determining the scattering amplitude, valid for scattering potentials that

are weak (and so may be regarded as a perturbation), is by means of the Born approximation. To

derive the expression for the scattering amplitude in this case, we first express the time independent

Schrödinger equation in integral form.

Integral form of the Schrödinger equation

The time independent Schrödinger equation

[

− h̄2

2m
∇2 + V (r)

]

ψ(r) = Eψ(r) (4.61)
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can be written as

[∇2 + k2]ψ(r) = Q(r) (4.62)

where

k =
√

2mE/h̄

Q(r) =
2m

h̄2 V (r) ψ(r) (4.63)

Note that

• V (r) in (4.61) need not be spherically symmetric,

• Q(r), the “inhomogeneous source term” itself depends on ψ(r)

• (4.62) is the inhomogeneous Helmholtz equation.

Suppose there exists a function, G(r− r′), that is the solution to the following differential equation

[∇2 + k2]G(r − r′) = δ(r − r′) (4.64)

where the Dirac delta function δ(r − r′) is defined by

δ(r − r′) =
1

(2π)3

∫

all space
eis·(r−r′)ds (4.65)

In what follows, it is understood that the Laplacian ∇2 acts on the argument r. We can then

express ψ(r) as an integral

ψ(r) =

∫

all space
G(r − r′)Q(r′)dr′ (4.66)

Note that (4.66) is a integral equation since the unknown function ψ(r) appears under the integral

sign. To show that (4.66) satisfies (4.62) consider

[∇2 + k2]ψ(r) = [∇2 + k2]

∫

all space
G(r − r′)Q(r′)dr′

=

∫

all space
[(∇2 + k2)G(r − r′)]Q(r′)dr′

=

∫

all space
δ(r − r′)Q(r′)dr′

= Q(r) (4.67)
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The function G(r − r′) is called the Green’s function for the equation (4.62). In general, the

Green’s function for a given differential equation represents the “response” to a delta-function

source. The easiest way to determine the G(r− r′) here is by taking the Fourier transform (which

turns the differential equation into a algebraic equation). Let

G(r) =
1

(2π)3/2

∫

all space
eis·rg(s)ds (4.68)

Then

(∇2 + k2)G(r) =
1

(2π)3/2

∫

all space
[(∇2 + k2)eis·r]g(s)ds

=
1

(2π)3/2

∫

all space
(k2 − s2)eis·rg(s)ds (4.69)

Problem 4: Verify Eq (4.69).

This means that

1

(2π)3/2

∫

all space
(k2 − s2)eis·rg(s)ds =

1

(2π)3

∫

all space
eis·rds (4.70)

which implies

g(s) =
1

(2π)3/2

1

(k2 − s2)
(4.71)

so that

G(r) =
1

(2π)3

∫

all space
eis·r

1

(k2 − s2)
ds (4.72)

To evaluate the integral (4.72) we first note that r is fixed as far as the s integration is concerned.

It is advantageous to do the integration in spherical coordinates such that s = (s, θ, ϕ) and with

the polar axis pointing along r. Then since s ·r = sr cos θ and ds = s2 sin θ dθ dϕ ds, (4.72) becomes

G(r) =
1

(2π)3

∫ 2π

0
dϕ

∫ ∞

0

s2ds

(k2 − s2)

∫ 1

−1
d cos θ eisr cos θ (4.73)

The ϕ integration is trivial (= 2π) and the θ integration yields

∫ 1

−1
d cos θ eisr cos θ =

2 sin(sr)

sr
(4.74)

Thus

G(r) =
1

(2π)2
2

r

∫ ∞

0

s sin(sr)

(k2 − s2)
ds

=
1

4π2r

∫ ∞

−∞

s sin(sr)

(k2 − s2)
ds (4.75)
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Writing sin(sr) = 1
2i(e

isr − e−isr) (4.75) becomes

G(r) =
i

8π2r
[I1 − I2]

I1 =

∫ ∞

−∞

seisr

(s− k)(s+ k)
ds

I2 =

∫ ∞

−∞

se−isr

(s− k)(s+ k)
ds

(4.76)

The integrals I1 and I2 can be evaluated using Cauchy’s integral formula.

Problem 5: In (4.76), the integration is along the real axis and passes right over the pole singu-

larities at ±k. How to deal with integration in the vicinity of these singularities is fixed by the

boundary conditions; the result is that the contour of integration should go over the singularity at

−k and under the singularity at +k. We must close the contour in such a way that the semicircle

at infinity contributes nothing.

• Show that for I1, we must close the contour above the real axis. Hence, show that

I1 = iπeikr

• For I2 show that the contour must be closed below the real axis so that

I2 = −iπeikr

(Remember that when you go round the contour in the clockwise direction, you pick up a

minus sign).

Using the results of the above problem, we have

G(r) = −e
ikr

4πr
(4.77)

so that the general solution to (4.66) takes the form

ψ(r) = ψ0(r) −
m

2πh̄2

∫

all space

eik|r−r′|

|r − r′| V (r′)ψ(r′)dr′ (4.78)

where the ψ0(r) satisfies the free particle Schrödinger equation

[∇2 + k2]ψ0(r) = 0 (4.79)



124 CHAPTER 4. SCATTERING THEORY

Equation (4.78) is the integral form of the Schrödinger equation and is equivalent to the differential

form plus boundary conditions.

Problem 6: Check that (4.78) satisfies (4.62) by direct substitution.

Hint: The following identity will be useful:

∇2
(

1

|r − r′|

)

= −4πδ(r − r′)

The ∇ acts on the r argument.

First Born approximation

Suppose V (r′) is localised about r′ = 0. (This means that the potential drops to zero outside

some finite region). We want to determine ψ(r) at points far away (i.e. r � r′) from the scattering

centre. For this case we have

|r − r′|2 ∼= r2
(

1 − 2r · r′
r2

)

=⇒ |r − r′| ∼= r − r̂ · r′ (4.80)

where r̂ denotes a unit vector pointing along r. Let

k′ ≡ kr̂

then

eik|r−r′| ∼= eikre−ik′·r′ (4.81)

and therefore
eik|r−r′|

|r − r′|
∼= eikr

r
e−ik′·r′ (4.82)

In the case of scattering where the incident beam is along the z−axis, we require

ψ0(r) = eikz (4.83)

In the asymptotic limit (large r), (4.78) reduces to

ψ(r) ∼= eikz − m

2πh̄2

eikr

r

∫

all space
e−ik′·r′V (r′)ψ(r′)dr′ (4.84)

from which we can read off the scattering amplitude

f(θ, ϕ) = − m

2πh̄2

∫

all space
e−ik′·r′V (r′)ψ(r′)dr′ (4.85)



4.4. THE QUANTUM MECHANICAL SCATTERING PROBLEM 125

This expression for f(θ, ϕ) is exact. We now invoke the Born approximation: Suppose the

incoming plane wave is not substantially altered by the potential (i.e. the scattering potential is

weak), than it makes sense to substitute

ψ(r′) ≈ ψ0(r
′) = eikz′ = eik·r

′

(4.86)

where k = kẑ, into the integral (4.84). The scattering amplitude in the Born approximation then

reduces to

f(k′,k) = f(θ, ϕ) = − m

2πh̄2

∫

all space
e−i(k′−k)·r′V (r′)dr′ (4.87)

(Note: k and k′ both have magnitude k but the former points in the direction of the incident beam

while the latter points towards the detector). Equation (4.87) indicates that f(θ, ϕ) in the Born

approximation is just the Fourier transform of the scattering potential.

For a spherically symmetric potential, V (r) = V (r), the Born approximation for f(θ) reduces to

f(θ) ∼= − 2m

qh̄2

∫ ∞

0
rV (r) sin(qr)dr (4.88)

where

q = k′ − k

q = |k′ − k|

= 2k sin(θ/2)

(k′ − k) · r′ = qr′ cos θ′ (4.89)

For low-energy scattering, where the de Broglie wavelength of the scattered particle is much

larger than the extent of the scattering region, the Born approximation simplifies to

f(θ, ϕ) ∼= − m

2πh̄2

∫

all space
V (r′)dr′ (4.90)

Problem 7: A potential of considerable utility in both nuclear physics and chemistry is the Yukawa

or “screened” Coulomb potential:

V (r) = −Ae
−r/r0

r

where r0 > 0. Determine the scattering amplitude in the first Born approximation for this potential.

Hence, obtain the differential scattering cross section in the limit r0 → ∞.
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Answer: The scattering amplitude is given by

f(θ) =
2Am

h̄2

(

r20
1 + q2r20

)

and the differential cross section at the limit r0 → ∞ is

dσ

dΩ
=

4A2m2

h̄4q4

Problem 8†: Determine the scattering amplitude in the first Born approximation for the spheri-

cally symmetric square well.

Answer: For an attractive square well, we have

f(θ) =
2mV0

h̄2q3
(sin qa− qa cos qa)

Problem 9†: Determine the scattering amplitude in the first Born approximation for the potential

V (r) = −Ae−br2

where A, b > 0.

Answer: The scattering amplitude is given by

f(θ) =
Am

√
π

2h̄2b3/2
e−q2/4b

4.5 *Formal time-independent scattering theory

We now develop a time-independent formulation of scattering processes. Assume that the Hamil-

tonian for the scattering problem is

Ĥ = Ĥ0 + V̂ (4.91)

where Ĥ0 stands for the kinetic energy operator

Ĥ0 =
p̂2

2m
(4.92)

In the absence of a scatterer, V̂ would be zero and the energy eigenstate would be just a free particle

state |p〉 where

Ĥ0|p〉 =
p2

2m
|p〉 (4.93)



4.5. *FORMAL TIME-INDEPENDENT SCATTERING THEORY 127

The presence of V̂ therefore causes the energy eigenstate to be different from the free-particle state.

For elastic scattering, where no change in energy is involved, we need to find solutions to Eq. (4.91)

with the same energy eigenvalue as Eq. (4.93).

In general, let |φ〉 be an energy eigenstate of Ĥ0

Ĥ0|φ〉 = E|φ〉 (4.94)

where in general, |φ〉 stands for either plane waves or free spherical wave states. We want to solve

Ĥ|ψ〉 =

(

Ĥ0 + V̂

)

|ψ〉 = E|ψ〉 (4.95)

with both Ĥ0 and Ĥ exhibiting continuous energy spectra. We look for solutions to Eq. (4.95)

such that

|ψ〉 → |φ〉 as V̂ → 0 (4.96)

where |φ〉 is the solution to the free particle Schrödinger equation Eq. (4.94) with the same energy

eigenvalue.

The desired solution (at least in a formal sense) is

|ψ〉 = |φ〉 +

(

E − Ĥ0

)−1

V̂ |ψ〉 (4.97)

although there are complications arising from the singular nature of the operator (E − Ĥ0)
−1.

Problem 10†: Verify that Eq. (4.97) is indeed a solution to Eq. (4.95)

Moreover, the prescription for dealing with the singular nature of (E − Ĥ0)
−1 is to treat E as a

complex variable and to add an infinitesimal imaginary number to it, i.e.

|ψ〉 = |φ〉 +
1

(E − Ĥ0 + iε)
V̂ |ψ〉 (4.98)

Eq. (4.98) is called the Lippmann-Schwinger equation and is a vector equation independent of

any particular representations.

4.5.1 *Lippmann-Schwinger equation in the position representation

We now focus on expressing the operator Lippmann-Schwinger equation Eq. (4.98) in the position

representation, which enables us to obtain the scattering amplitude in the (first) Born approxima-

tion. In the position basis (4.98) becomes

〈r|ψ〉 = 〈r|φ〉 +

∫

dr′〈r| 1

(E − Ĥ0 + iε)
|r′〉〈r′|V̂ |ψ〉 (4.99)
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which is an integral equation for scattering because the unknown ket |ψ〉 appears under the

integral sign. The quantity

G(r, r′) =
h̄2

2m
〈r| 1

(E − Ĥ0 + iε)
|r′〉 (4.100)

is just the Green’s function (equation (4.77)) derived in the previous section. It was worked out to

be

G(r, r′) = − 1

4π

eik|r−r′|

|r − r′|
where E = h̄2k2/2m. Equation (4.98) then just reduces to the integral equation (4.66). By looking

at the large distance behaviour of r, we again get the expression for the scattering amplitude

describing an incident beam of particles in the direction k being scattered in the direction k′:

f(k′,k) = − m

2πh̄2 〈k
′|V̂ |ψ〉 (4.101)

which is exact.

4.5.2 *Born again!

We now define the transition operator T̂ , such that

V̂ |ψ〉 = T̂ |φ〉 (4.102)

Multiplying the Lippmann-Schwinger equation Eq.(4.98) by V̂ , we obtain

T̂ |φ〉 = V̂ |φ〉 + V̂
1

(E − Ĥ0 + iε)
T̂ |φ〉 (4.103)

which is supposed to hold for any |φ〉 (taken to be any plane-wave state for example, which we

know are complete). Therefore the following operator equation is satisfied:

T̂ = V̂ + V̂
1

(E − Ĥ0 + iε)
T̂ (4.104)

The scattering amplitude can now be written as

f(k′,k) = − m

2πh̄2 〈k
′|T̂ |k〉 (4.105)

which shows that to determine the scattering amplitude, it is sufficient to know the transition

operator T̂ .

An iterative solution for T̂ is obtained as follows:

T̂ = V̂ + V̂
1

(E − Ĥ0 + iε)
V̂ + V̂

1

(E − Ĥ0 + iε)
V̂

1

(E − Ĥ0 + iε)
V̂ + · · · (4.106)
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Correspondingly, we can expand f(k′,k) as follows:

f(k′,k) =
∞
∑

n=1

f (n)(k′,k) (4.107)

where n is the number of times the V̂ operator enters. We have

f (1)(k′,k) = − m

2πh̄2 〈k
′|V̂ |k〉

f (2)(k′,k) = − m

2πh̄2 〈k
′|V̂ 1

(E − Ĥ0 + iε)
V̂ |k〉 (4.108)

etc., which are just the first, second etc. order Born approximations and is called the Born series.

A physical interpretation is that the scattering process is viewed as a multi-step process with,

for example, f (2)(k′,k) being viewed as the incident wave (with wave vector k undergoing two

sequential interactions before being scattered into the direction k′ and so on. In this context,

the Green’s function is called the propagator – it tells us how a disturbance propagates between

one interaction and the next. The Born series was the inspiration for Feynman’s formulation of

relativistic quantum mechanics, which is expressed entirely in terms of vertex functions V̂ and

propagators G, connected together in Feynman diagrams. It is this technique that forms the

basis for the treatment of the quantum theory of fields and its application to a wide range of

phenomena including elementary particle and condensed matter physics.
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Chapter 5

Identical Particles in Quantum

Mechanics

5.1 Introduction

Consider a system of N identical particles. In classical physics it is possible (at least in principle), to

keep track of the individual particles at each instant of time. In this sense, the particles retain their

individuality and are distinguishable. In QM the situation is very different. When two identical

particles come together, interact, and then separate, their individuality is lost. This is because we

cannot ‘tag’ the particles nor can we follow their trajectories (since this would entail a position

measurement at each instant in time which necessarily disturbs the system). Therefore, whereas

in classical physics there is no necessity to treat distinguishable or non-distinguishable particles

differently, in QM the fact that identical particles are indistinguishable must be “built in” to the

theory.

5.2 Multi-particle systems

Consider the Hamiltonian for the N−particle system

Ĥ(1, 2, . . . , N) =
N
∑

i=1

[

− h̄2

2m
∇2

i + vext(i)

]

+ Vint(1, 2, . . . , N) (5.1)

where the labels 1, 2, . . . represent all of particle i’s internal (for example spin) and external (for

example position) degrees of freedom, collectively. vext(i) is the external potential (for example due

131
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to an electric/magnetic field) acting on the ith particle, and Vint(1, 2, . . . , N) represents the mutual

interaction between the particles. If, as is usually the case, the interaction between the particles is

due to two-body interactions (as in the case of the Coulomb interaction between charged particles)

then

Vint(1, 2, . . . , N) =
1

2

N
∑

i6=j

Vint(i, j) (5.2)

where due to Newton’s 3rd law

Vint(i, j) = Vint(j, i) (5.3)

Therefore the N−particle Hamiltonian is given by

Ĥ(1, 2, . . . , N) =
N
∑

i=1

[

− h̄2

2m
∇2

i + vext(i)

]

+
1

2

N
∑

i6=j

Vint(i, j) (5.4)

Note that this Hamiltonian in invariant under the interchange of particles. Let P̂ij be a

particle interchange (or permutation) operator which interchanges the labels i ↔ j such that its

action on f(1, 2, . . . , N) is

P̂ijf(1, 2, . . . , i, . . . , j, . . . , N) = f(1, 2, . . . , j, . . . , i, . . . , N) (5.5)

Note that from (5.5) it is apparent that P̂ 2
ij = Î which implies that P̂ij has ±1 as eigenvalues. (In

fact, P̂ij is both Hermitian and unitary). Let P̂ denote some arbitrary particle interchange, not

necessarily pair-wise. (Note that P̂ can be represented as the product of pair-wise interchanges,

P̂ij . P̂ is called even(odd) if it is made up of an even(odd) number of the P̂ij). The property

P̂ 2 = Î still holds. Then by the symmetry of the Hamiltonian under any number of interchanges

of identical particles, we have

[Ĥ, P̂ ] = 0 (5.6)

Theorem: Let Ψ(1, 2, . . . , N) denote the N−body wave function for this system. If Ψ(1, 2, . . . , N)

is an eigenfunction of Ĥ(1, 2, . . . , N) with eigenvalue E, then so is P̂Ψ.

Proof: Given ĤΨ = EΨ, from (5.6) we have

Ĥ(P̂Ψ) = P̂ (ĤΨ) = E(P̂Ψ) (5.7)

i.e. P̂Ψ is also an eigenstate corresponding to the same eigenvalue E.

This means that we can use the eigenvalues of P̂ (which are ±1) together with the energy E to

label the eigenstates of the Hamiltonian. In general for any symmetrical operator (i.e. one which

is even under interchange of particle labels), Ŝ(1, 2, . . . , N) we have

[P̂ , Ŝ] = 0 (5.8)
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If |Φ〉 = P̂ |Ψ〉 for some arbitrary |Ψ〉 then

〈Φ|Ŝ|Φ〉 = 〈Ψ|P̂ †ŜP̂ |Ψ〉

= 〈Ψ|P̂ †P̂ Ŝ|Ψ〉

= 〈Ψ|Ŝ|Ψ〉 (5.9)

using the unitary property of P̂ . Therefore the expectation value (and more generally the matrix

elements) of the states |Ψ〉 and P̂ |Ψ〉 of a symmetrical operator Ŝ are equal. Since identical particles

are influenced equivalently by any physical process, all physical operators are symmetric and

thus the states Ψ(1, 2, . . . , N) and P̂Ψ(1, 2, . . . , N) cannot be distinguished from one another. As

we have seen, we must in fact have

P̂Ψ(1, 2, . . . , N) = ±Ψ(1, 2, . . . , N) (5.10)

All experimental observations to date imply that the sign factor is either always +1 (i.e. Ψ is com-

pletely symmetric and represents bosons) or else it is ±1 for even/odd P̂ (i.e. Ψ is antisymmetric

with respect to any pair-wise interchange and represents fermions). Furthermore, the nature of a

given type of particle is intimately connected with its intrinsic spin. This connection between spin

and symmetry follows from the spin-statistics theorem of quantum field theory which states

that all elementary particles with integer spin (including spin 0) are bosons (obeying Bose-Einstein

statistics) and all particles with half-odd integer spin are fermions (obeying Fermi-Dirac statistics).

5.2.1 Pauli exclusion principle

Let ΨA(1, 2, . . . , N) denote a totally antisymmetric wave function. Then

P̂ijΨA(1, . . . , i, . . . , j, . . . N) = ΨA(1, . . . , j, . . . , i, . . . N)

= −ΨA(1, . . . , i, . . . , j, . . . N) (5.11)

If we set i = j in (5.11) we get

ΨA(1, . . . , i, . . . , i, . . . N) = −ΨA(1, . . . , i, . . . , i, . . . N) (5.12)

i.e.

ΨA(1, . . . , i, . . . , i, . . . N) = 0

Thus two fermions in the same spin state cannot occupy the same position in space. (Remember that

i includes both the spatial and spin degrees of freedom). This is the Pauli Exclusion Principle.

Note that this is true independent of whether the particles interact with one another or not. The

key point is that they are identical fermions.
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5.2.2 Representation of Ψ(1, 2, . . . , N)

For N identical non-interacting particles, the Hamiltonian is

Ĥ =
N
∑

i=1

Ĥ(i) (5.13)

i.e the sum of N−identical one-particle Hamiltonians Ĥ(i). Assume that the eigenfunctions of Ĥ(i)

are given by the solution to the following one-particle Schrödinger equation

Ĥ(i)ψαi(i) = Eαiψαi(i) (5.14)

where i labels the particles (and is in the range 1 → N), while αi labels the different one-particle

eigenstates (and ranges from 1 → ∞). We can use these one-particle eigenfunctions to construct

the N−particle wave function in various ways.

5.2.3 Neglecting the symmetry of the many-body wave function

If we set

Ψ(1, 2, . . . , N) = ψα1
(1)ψα2

(2) · · ·ψαN (N) (5.15)

then

ĤΨ =
N
∑

i=1

Ĥ(i)Ψ

=
N
∑

i=1

Ĥ(i)

[

ψα1
(1)ψα2

(2) · · ·ψαN (N)

]

=
N
∑

i=1

ψα1
(1) · · ·

[

Ĥ(i)ψαi(i)

]

· · ·ψαN (N)

=
N
∑

i=1

ψα1
(1) · · ·

[

Eαiψαi(i)

]

· · ·ψαN (N)

=
N
∑

i=1

EαiΨ

= EΨ (5.16)

which implies E =
∑N

i=1Eαi . These states are in general neither symmetric nor antisymmetric,

and therefore cannot describe real systems of identical particles.
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5.3 Fermions

For two fermions, the antisymmetric state is

ΨA(1, 2) =
1√
2

[

ψα1
(1)ψα2

(2) − ψα1
(2)ψα2

(1)

]

(5.17)

Problem 1: Show that if the ψαi(i)’s are orthonormal, then ΨA(1, 2) defined above is normalised

to one.

In general, for N identical fermions the many-body wave function is given by

ΨA(1, · · ·N) =
1√
N !

∑

P

(−1)P P̂

[

ψα1
(1)ψα2

(2) · · ·ψαN (N)

]

=
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψα1
(1) ψα1

(2) · · · ψα1
(N)

...
...

...
...

ψαN (1) ψαN (2) · · · ψαN (N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.18)

The normalisation factor of 1/
√
N ! is introduced because the determinant consists of N ! mutually

orthogonal terms. (Actually orthogonality is not really necessary, all that is required is that the

ψαi(i)’s are linearly independent.) Such determinants of one-particle states are called Slater

determinants. Since the interchange of any two particle coordinates corresponds to interchanging

columns in the Slater determinant (which introduces a factor of –1), the antisymmetry is already

built in. Also, the ΨA(1, · · ·N) defined above is zero if we set αi = αj for any i 6= j, i.e. no state

can be multiply occupied (this is another statement of the Pauli exclusion principle).

5.4 Bosons

For two bosons, the symmetric state for α1 6= α2 is

ΨS(1, 2) =
1√
2

[

ψα1
(1)ψα2

(2) + ψα1
(2)ψα2

(1)

]

(5.19)

whereas for α1 = α2 we have simply

ΨS(1, 2) = ψα1
(1)ψα1

(2) (5.20)

In general, for N bosons the many-body wave function is defined as

ΨS(1, · · ·N) =

√

N1!N2! . . .

N !

∑

P ′

P̂ ′
[

ψα1
(1)ψα2

(2) · · ·ψαN (N)

]

(5.21)
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where N1 is the multiplicity of state α1 etc. The summation
∑

P ′ is only over those permutations

leading to distinct terms and includes N !/N1!N2! . . . different terms.

5.5 Exchange forces

We now examine the physical impact of the symmetrization requirement for identical particles.

Consider a simple one-dimensional case with two non-interacting identical particles, one in state

ψa and the other in state ψb with these two states being orthonormal.

If the two particles are distinguishable, with particle 1 in state ψa(x1) and particle 2 in state

ψb(x2), then the total wave function for the two particle system is

Ψ(x1, x2) = ψa(x1)ψb(x2) (5.22)

If the two particles are identical bosons, then the total normalised wave function is

ΨS(x1, x2) =
1√
2

[

ψa(x1)ψb(x2) + ψa(x2)ψb(x1)

]

(5.23)

and if they are identical fermions it is

ΨA(x1, x2) =
1√
2

[

ψa(x1)ψb(x2) − ψa(x2)ψb(x1)

]

(5.24)

What is the expectation value of the square of the separation distance between the two particles

X12 ? Here X12 is defined as

X12 = 〈(x1 − x2)
2〉

=

∫

dx1dx2Ψ
∗(x1, x2)(x1 − x2)

2Ψ(x1, x2)

= 〈x2
1〉 + 〈x2

2〉 − 2〈x1x2〉 (5.25)

where the expectation value is with respect to the total two particle wave function. There are three

cases.

Case 1: Distinguishable particles

Using (5.22), we have

〈x2
1〉 =

∫

dx1dx2Ψ
∗(x1, x2)x

2
1Ψ(x1, x2)

=

∫

x2
1|ψa(x1)|2dx1

∫

|ψb(x2)|2dx2

= 〈x2〉a (5.26)
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i.e. this is the expectation value of x2 in the one-particle state ψa. (Also remember that ψa and ψb

are normalised). Similarly,

〈x2
2〉 =

∫

x2
2|ψb(x2)|2dx2

∫

|ψa(x1)|2dx1

= 〈x2〉b (5.27)

and

〈x1x2〉 =

∫

x1|ψa(x1)|2dx1

∫

x2|ψb(x2)|2dx2

= 〈x〉a〈x〉b (5.28)

which implies that

X12 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b (5.29)

Note that the above result would have been the same if particle 1 had been in state ψb and particle

2 had been in ψa.

Case 2: Identical particles Using (5.23) and (5.24) we have

〈x2
1〉 =

1

2

[ ∫

x2
1|ψa(x1)|2dx1

∫

|ψb(x2)|2dx2

]

+
1

2

[ ∫

x2
1|ψb(x1)|2dx1

∫

|ψa(x2)|2dx2

]

± 1

2

[ ∫

x2
1ψ

∗
a(x1)ψb(x1)dx1

∫

ψ∗
b (x2)ψa(x2)dx2

]

± 1

2

[ ∫

x2
1ψ

∗
b (x1)ψa(x1)dx1

∫

ψ∗
a(x2)ψb(x2)dx2

]

=
1

2

[

〈x2〉a + 〈x2〉b ± 0 ± 0

]

=
1

2

(

〈x2〉a + 〈x2〉b
)

(5.30)

where the + sign corresponds to bosons and the − sign to fermions. Similarly,

〈x2
2〉 =

1

2

(

〈x2〉b + 〈x2〉a
)

(5.31)

Problem 2: Verify (5.31) above. (Note that you would expect 〈x1〉 = 〈x2〉 since one can’t tell the

particles apart.) Then show that

〈x1x2〉 = 〈x〉a〈x〉b ± |〈x〉ab|2 (5.32)
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where

〈x〉ab =

∫

xψ∗
a(x)ψb(x)dx (5.33)

Therefore, we have

X12 =



















〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b distinguishable particles

〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b − 2|〈x〉ab|2 bosons

〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b + 2|〈x〉ab|2 fermions

This indicates that identical bosons tend to be somewhat closer together and identical fermions

somewhat farther apart than distinguishable particles in the same pair of states. Note that 〈x〉ab

vanishes unless the two wave functions actually overlap. As a practical matter, it is reasonable to

assume that identical particles with non-overlapping wave functions (if for example they are very far

apart) are distinguishable. If there is some overlap of the wave functions, then the system behaves

as though there were a “force of attraction” between identical bosons and a “force of repulsion”

between identical fermions (which tends to keep them apart). It is called the exchange force,

although it is not really a force at all as no physical agency is acting on the particles; rather it

is a purely geometrical consequence of the symmetrization requirement. It is a strictly quantum

mechanical phenomenon with no classical counterpart.

Problem 3: Imagine two noninteracting particles each of mass m in an infinite square well. If one

of the particles is in state ψn where

ψn(x) =

√

2

L
sin

(

nπx

L

)

and the other is in state ψm, calculate X12 assuming (a) they are distinguishable, (b) they are

identical bosons and (c) they are identical fermions.

Answer: To be done in class.

5.6 Helium atom

The accurate determination of the properties of atoms is a difficult task. The two main sources of

the difficulty are:

• the Coulomb interaction between the electrons, and

• the spin-orbit interaction between the electron spins and the electric fields in the atom.
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In this section we deal with the simplest atom after hydrogen, the helium atom. (Note that other

two-electron ions such as H−, Li+, Be++ etc. can be treated in the same way.) The spin-orbit

interaction can be regarded as a weak perturbation; to a first approximation it can be neglected

entirely and we only consider the Coulomb interactions between the electrons and the between

electrons and the positively charged nuclei. The Hamiltonian (in atomic units) is given by

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
− Z

r2
+

1

r12
(5.34)

where for generality we write the Hamiltonian in terms of Z rather then setting it to 2 for the specific

case of helium. In the equation above, the first two terms correspond to the kinetic energies of the

two electrons, the next two terms are the electron-nuclei coulombic attraction, and the last term

is the coulombic repulsion between the electrons. We will use both perturbation theory and the

variational method to “solve” the time-independent Schrödinger equation to determine the ground

state of this atom.

5.6.1 Ground state

We apply perturbation theory to this problem by considering the inter-electronic repulsion term to

be a perturbation. In this case, the unperturbed hamiltonian Ĥ0 is given by

Ĥ0 = −1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
− Z

r2
(5.35)

and the zeroth-order ground state wave function by

ψ(0)(r1, r2) = ψ1s(r1) ψ1s(r2) (5.36)

ψ1s(r) =

(

Z3

π

) 1

2

e−Zr (5.37)

Here we are using the fact that in the ground state the two electrons are a state of total spin S = 0,

which is already antisymmetric with respect to interchange of their spins (see Chapter 2), so that

they can have the same spatial wave function.

Since the ground state energy of a hydrogen-like system is −Z2/2, the energy E(0) in atomic units

is given by

E(0) = −Z
2

2
− Z2

2
= −Z2 (5.38)

The first-order correction to E(0) (see Chapter 3) is

E(1) =

∫ ∫

dr1 dr2 ψ
(0)∗(r1, r2)

1

r12
ψ(0)(r1, r2)

=

∫ ∫

dr1 dr2 ψ1s(r1) ψ1s(r2)
1

r12
ψ1s(r1) ψ1s(r2) (5.39)
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The integral is evaluated in the problem below.

Problem 4: We evaluate the integral in (5.39) as follows. Let r1 and r2 be the radius vectors of

electron 1 and 2 respectively and let θ be the angle between these two vectors. In general, this

is not the polar angle from the z-axis but if we choose on of the radius vectors, say r1, to be the

z-axis, then we can treat θ as the polar angle in spherical coordinates. From the cosine rule, we

have

r12 =

(

r21 + r22 − 2r1r2 cos θ

)
1

2

Show that E(1) becomes

E(1) =
Z6

π2

∫ ∞

0
e−2Zr1 4πr21dr1

∫ ∞

0
e−2Zr2r22dr2

×
∫ 2π

0
dφ

∫ π

0

sin θ dθ

(r21 + r22 − 2r1r2 cos θ)
1

2

(5.40)

Letting x = cos θ, show that the integral over θ is
∫ π

0

sin θ dθ

(r21 + r22 − 2r1r2 cos θ)
1

2

=

∫ 1

−1

dx

(r21 + r22 − 2r1r2x)
1

2

=
2

r1
r1 > r2

=
2

r2
r1 < r2 (5.41)

Substituting this result into E(1), show that

E(1) = 16Z6
∫ ∞

0
e−2Zr1 r21 dr1

(

1

r1

∫ r1

0
e−2Zr2r22 dr2 +

∫ ∞

r1

e−2Zr2r2 dr2

)

= 4Z3
∫ ∞

0
e−2Zr1 r21 dr1

[

1

r1
− e−2Zr1

(

Z +
1

r1

)]

=
5

8
Z (5.42)

The final result is

E(1) =
5

8
Z (5.43)

so that the ground state energy of the helium atom through first order is

E = E(0) + E(1) + · · · = −Z2 +
5

8
Z + · · · (5.44)
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Setting Z = 2, we find that E = − 11
4 = −2.75 or −74.83 eV, while the experimental value is −79.00

eV or −2.9033 au. This means that first-order perturbation theory already gives a result within 5

% of the experimental (exact) value. Note that more extensive perturbation calculations to many

orders by Scheer and Knight (Rev. Mod. Phys. 35, 426 (1963)) give

E = −Z2 +
5

8
Z − 0.157666254 +

0.008698679

Z
+ · · · (5.45)

which yields a value of −2.9037 au, in excellent agreement with experiment.

Problem 5: In this problem, we study how to get the ground state energy of the helium atom

using the variational method. We start with the trial wave function (5.36) with Z as a variational

parameter. Note that this wave function is already normalised. Thus we need to evaluate

E =

∫

dr1 dr2 ψ
∗Ĥψ

with the Hamiltonian defined above. The evaluation of the integral is greatly simplified if one

recalls that the ψ1s is an eigenfunction of a hydrogen-like Hamiltonian with a nucleus having a

charge Z. It is convenient to rewrite this Hamiltonian as

Ĥ = −1

2
∇2

1 −
Z

r1
− 1

2
∇2

2 −
Z

r2
+
Z − 2

r1
+
Z − 2

r2
+

1

r12
(5.46)

where
(

− 1

2
∇2

1 −
Z

r1

) (

Z3

π

)
1

2

e−Zr = −Z
2

2

(

Z3

π

)
1

2

e−Zr (5.47)

Show that

E(Z) =
Z6

π2

∫ ∫

e−Z(r1+r2)

[

− Z2

2
− Z2

2

+
Z − 2

r1
+
Z − 2

r2
+

1

r12

]

e−Z(r1+r2) dr1 dr2

= −Z2 + 2(Z − 2)
Z3

π

∫

dr
e−2Zr

r
+

5

8
Z

= Z2 − 27

8
Z (5.48)

Now minimise E with respect to Z and show that

E = −2.8477 au

with Zmin = 27
16 . This value can be interpreted as an effective nuclear charge. The fact that this

value is less than 2 reflects the fact that each electron partially screens the nucleus from the other.
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While the agreement between the above result and experiment looks impressive, it can be mislead-

ing. Consider the ionisation energy (IE) for example, which is the difference between the energy

of a singly ionised helium atom and the energy of the helium atom in its ground state. From our

calculation above we get this to be IE = −2.0−(− 11
4 ) = 0.750 au = 20.4 eV, while the experimental

value is 24.6 eV. This is indeed a big difference and we should be able to do better. One way is to

use a more general form of the trial wave function (still using the variational method). We could

go beyond the one-electron product form used above and use a functional form that includes the

inter-electronic distance explicitly. This was first done by Hylleras in 1930, who used

ψ(r1, r2, r12) = e−Zr1 e−Zr2

[

1 + g(r1, r2, r12)

]

(5.49)

with g chosen to be a polynomial in r1, r2, r12 and whose expansion coefficients are variationally

optimised. Using 14 terms for g, he obtained a value of −2.9037 for the ground state energy (exact

to five significant figures). A more extensive calculation using this approach, by Pekeris in 1959

yielded −2.903724375 au with 1078 terms!

While this showed that one could obtain essentially exact energies using the variational method

with more elaborate trial wave functions in which the inter-electronic distance r12 is incorporated

explicitly, this approach is computationally very demanding and does not lend itself to the study

of large atoms and molecules. More state-of-the-art methods will be discussed later.

5.7 Hydrogen molecule

We now consider the ground state of the hydrogen molecule, the main point of this calculation being

to study the effect of the exchange energy on the chemical bonding between atoms. This energy

is entirely a consequence of the antisymmetry of the electron wave function under the interchange

of the two electrons.

The hydrogen molecule consists of two hydrogen atoms bound together. Since the protons are much

more massive than the electrons, we neglect their motion and treat them as fixed centres of force

(i.e. the Born-Oppenheimer approximation.) With this approximation, the Hamiltonian for a

hydrogen molecule becomes

Ĥ(1, 2) = − h̄2

2m
∇2

1 −
e2

r1
− h̄2

2m
∇2

2 −
e2

r2
+
e2

r12
+
e2

R
− e2

r1B
− e2

r2A
(5.50)

where the first and third term corresponds to the kinetic energies of the electrons; the second and

fourth terms correspond to the potential energy of interaction between electron 1 and nucleus A
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and electron 2 and nucleus B, respectively; the fifth and sixth term correspond to the potential

energy of inter-electronic and inter-nuclear repulsions; the seventh and eighth term corresponds to

the potential energy of interaction between electron 1 and nucleus B and electron 2 and nucleus A

respectively, (the various coordinates are labelled in the figure below).

r

r

r

r r

A B

1 2

12

2A 1B

R

e
e

1
2

We write the Hamiltonian as

Ĥ = Ĥ0 + Ŵ (5.51)

where Ĥ0 is the “hydrogen atom” part of the Hamiltonian

− h̄2

2m
∇2

1 −
e2

r1
− h̄2

2m
∇2

2 −
e2

r2
(5.52)

and

Ŵ =
e2

r12
+
e2

R
− e2

r1B
− e2

r2A
(5.53)

Here the two-body potential is e2

r12
, whereas −( e2

r1
+ e2

r1B
) is the “external” potential for particle 1

and −( e2

r2
+ e2

r2A
) is the “external” potential for particle 2. The repulsive potential e2

R between the

two protons is just a constant i.e. independent of the electron positions. To determine the ground

state energy of the hydrogen molecule, we treat Ŵ as a perturbation. In this case we only need to

find a good approximation for the ground state wave function. The energy is then approximated

by the expectation value of Ĥ in this approximate ground state. For R sufficiently large, we have

two unperturbed hydrogen atoms with the Hamiltonian Ĥ0, and we use the eigenfunctions of Ĥ0

as our approximate ground state.

Since the electrons are fermions, the total wave function (which must be a direct product of the

spatial and spin parts), must be antisymmetric in the particle labels (which include the spin degrees

of freedom). From the discussion of the addition of angular momenta for two spin− 1
2 particles in
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Chapter 2, we know that the possible values of the total spin angular momentum for the electrons

are the S = 1 triplet state, χ(t) where

χ(t) =



















|1, 1〉 = | + +〉
|1, 0〉 = 1√

2
(| + −〉 + | − +〉)

|1,−1〉 = | − −〉

and the S = 0 singlet state, χ(s) with

χ(s) = |0, 0〉 =
1√
2
(| + −〉 − | − +〉) (5.54)

Note that the triplet state is even under the interchange of the spin coordinates while the singlet

state is odd. The corresponding spatial wave functions are therefore

Ψs(r1, r2) = As

[

ψA(1) ψB(2) + ψA(2) ψB(1)

]

Ψt(r1, r2) = At

[

ψA(1) ψB(2) − ψA(2) ψB(1)

]

(5.55)

where As and At are normalisation constants, and the ψA(i), ψB(i) represent hydrogen atom ground

state wave functions centred at A and B respectively. Thus

ψA(1) =
1√
πa3

e−r1/a , ψA(2) =
1√
πa3

e−r2A/a

ψB(1) =
1√
πa3

e−r1B/a , ψB(2) =
1√
πa3

e−r2/a (5.56)

where a is the Bohr radius, a = h̄2/2me2.

Problem 6: Show that the normalisations As and At in equations (5.55) are given by

As =

[

2(1 +A2)

]− 1

2

At =

[

2(1 −A2)

]− 1

2

(5.57)

where the overlap integral, A, is given by

A =
1

πa3

∫

dr1e
−(r1+r1B)/a = 〈ψA|ψB〉 (5.58)

To evaluate integral (5.58), we transform to elliptical coordinates

ξ =
r1 + r1B

R

η =
r1 − r1B

R
(5.59)
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and φ (which is the angle of rotation about the line joining the two protons. The volume element

in these coordinates is

dr1 =
R3

8
(ξ2 − η2) dξ dη dφ (5.60)

with the range of integration being

1 ≤ ξ <∞, −1 ≤ η ≤ +1, 0 ≤ φ ≤ 2π (5.61)

Problem 7: Verify (5.60) and, using (5.60) and (5.61), show that

A =

[

1 +
R

a
+

1

3

(

R

a

)2]

e−R/a (5.62)

To the extent that Ψs and Ψt are good wave functions, the ground state energy of the hydrogen

molecule can be approximated in the singlet and triplet states by

Es(R) =

∫

Ψ∗
s(r1, r2) Ĥ Ψs(r1, r2) dr1 dr2

Et(R) =

∫

Ψ∗
t (r1, r2) Ĥ Ψt(r1, r2) dr1 dr2 (5.63)

These integrals can be rewritten with a little algebra in the form

Es(R) =
J +K

1 +A2

Et(R) =
J −K

1 −A2
(5.64)

where

J =

∫

|ψA(1)ψB(2)|2
[

e2

r12
+
e2

R
− e2

r1B
− e2

r2A

]

dr1 dr2

=
e2

R
−
∫

|ψA(1)|2 e2

r1B
dr1 −

∫

|ψB(2)|2 e2

r2A
dr2

+

∫

|ψA(1)|2 e2

r12
|ψB(2)|2 dr1 dr2 (5.65)

and

K =

∫

ψA(1) ψB(2)

[

e2

r12
+
e2

R
− e2

r1B
− e2

r2A

]

ψA(2) ψB(1) dr1 dr2

=
e2

R
A2 −A

∫

ψB(2)
e2

r2A
ψA(2)dr2 −A

∫

ψA(1)
e2

r1B
ψB(1)dr1

+

∫

ψA(1)ψB(2)
e2

r12
ψA(2)ψB(1) dr1 dr2 (5.66)
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Problem 8: Work out the steps leading to (5.64) - (5.66).

The integral J (5.65) is called the Coulomb interaction integral and contains the following

terms. The first term gives the Coulomb repulsion of the two protons. The second term gives

the energy due to the interaction of the proton at B with the “charge density” −e|ψA(1)|2 due

to electron 1, while the third term gives the interaction energy between the proton at A and the

“charge density” −e|ψB(2)|2 due to electron 2. (Since protons, like electrons, are identical particles,

the second and third terms must be equal.) The last term gives the interaction between the two

“charge densities” −e|ψA(1)|2 and −e|ψB(2)|2 centred at A and B. The integral K is called the

exchange integral and results strictly from the indistinguishability of the two electrons. It is this

type of term that gives rise to covalent bonding, ferromagnetism, etc.

Problem 9: The various integrals in (5.65) and (5.66) can be evaluated by the use of elliptical

coordinates.

• (a) Verify that
∫

|ψA(1)|2 e2

r1B
dr1 =

πa3

R

[

1 − e−2R/a
(

1 +
R

a

)]

(5.67)

• (b) The last term in (5.65) can be written as

∫

|ψA(1)|2 e2

r12
|ψB(2)|2 dr1 dr2 =

∫

ρA(1)ΦB(1) dr1 (5.68)

where

ρA(1) = −e |ψA(1)|2 (5.69)

is the “charge density” due to electron 1 centred at A and ΦB(1) is the “potential” at r1 due

to electron 2 with charge density −e|ψB(2)|2 centred at B. Thus ΦB(1) satisfies the Poisson

equation

∇2ΦB(r1) = 4πe |ψB(2)|2 (5.70)

Evaluate this potential and hence show that

J =
e2

R
e−2R/a

[

1 +
5

8
− 3

4

(

R

a

)2

− 1

6

(

R

a

)3]

(5.71)

For the exchange integral K, the terms involving only one integration are again obtained by going

to elliptical coordinates. The last term cannot be expressed in terms of elementary functions. It
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can, however, be expressed in terms of the exponential integral

Ei(x) = −
∫ ∞

−x

e−t

t
dt (5.72)

whose properties can be found on p.228 of the “Handbook of Mathematical Functions” by Abramowitz

and Stegun (in the Rayleigh Library). The final result for K (which you are welcome to verify but

the details can be found in the paper by Sugiura, Z. Physik, Vol. 45, p.484 (1927)) is:

K =
e2

R
A2
[

1 +
6

5
(C + ln

R

a
)

]

+
e2

a
e−2R/a

[

11

8
+

103

20

R

a
+

49

15

(

R

a

)2

+
11

15

(

R

a

)3]

+
6

5

e2

R
e2R/a

[

1 − R

a
+

1

3

(

R

a

)2]2

Ei(−4R/a)

− 12

5
AeR/a

[

1 − R

a
+

1

3

(

R

a

)2]

Ei(−2R/a) (5.73)

where C = 0.577215 . . . is Euler’s constant. A plot of Es and Et as functions of R is shown below.

6

E

-

R
Es

Et

Although quantitative agreement with experimental values for the equilibrium bond length and

dissociation energy is not very good, we find that Et is always higher in energy than Es. In fact
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the singlet state is called the bonding state while the triplet state is called the anti-bonding

state. Better agreement with experiment is obtained if we take into account the correlation

between the electrons i.e. the fact that electrons avoid each other as much as possible. One can

“build” this into the ground state wave function by constructing the two-electron wave function as

a function of r1, r2 and r12 (with variational parameters) and then using the variational principle

to get the best estimate for these parameters.

5.8 Scattering of identical particles

If the particles in the target and the incident beam are identical, it is impossible to tell if we are

observing a scattered beam particle or a recoiling target particle, as shown in the following figure:

1

1

2

2

1

1

2

2

There is no way of distinguishing between a deflection of a particle through an angle θ and a

deflection of (π − θ) in the centre-of-mass frame, since momentum conservation demands that if

one of the particles scatters through θ then the other goes in the direction (π − θ). For classical

scattering, there is an increase in the scattering cross section relative to the non-identical particle

case since the number of counts at a certain detector will be the sum due to both particles. The

consequence is that the classical cross section σcl(θ) is symmetric about θ = π/2:

σcl(θ) = σ(θ) + σ(π − θ) (5.74)

In QM there is no way of distinguishing the two final states. For quantum scattering, interference

occurs at the scattering amplitude level, i.e. between the scattering amplitudes f(θ) and f(π − θ),

which can result in dramatic changes.
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5.8.1 Scattering of identical spin zero bosons

The differential scattering cross section, for the scattering of two identical spin zero bosons (for

example, α-particles) is given by

dσ

dΩ
= |f(θ) + f(π − θ)|2

= |f(θ)|2 + |f(π − θ)|2 + 2Re

[

f∗(θ)f(π − θ)

]

(5.75)

which differs from the classical result (5.74) by the interference term (the last term on the r.h.s.).

It leads to an enhancement of the differential cross section at θ = π/2

dσ

dΩ

∣

∣

∣

∣

θ=π/2
= 4 × |f(θ = π/2)|2 (5.76)

as compared to the result that would have been obtained without interference:

dσ

dΩ

∣

∣

∣

∣

θ=π/2
= 2 × |f(θ = π/2)|2 (5.77)

Problem 10: Show that in the partial wave analysis of the cross section for boson-boson scattering,

only the even l values contribute to the differential cross section. (This means that it is impossible

to measure or even define odd-l phase shifts for boson-boson scattering).

5.8.2 Scattering of fermions

When the scattering of two spin− 1
2 particles is considered (for example electron-electron or proton-

proton scattering), then the scattering amplitude should reflect the basic antisymmetry of the total

wave function under the interchange of the two particles. If the two particles are in a spin singlet

state, then the spatial wave function is symmetric (even) and

dσs

dΩ
= |f(θ) + f(π − θ)|2 (5.78)

and we have the same situation as the boson case discussed above. If the two particles are in a spin

triplet state, then the spatial wave function is antisymmetric and

dσt

dΩ
= |f(θ) − f(π − θ)|2

= |f(θ)|2 + |f(π − θ)|2 − 2Re

[

f∗(θ)f(π − θ)

]

(5.79)
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In the scattering of two unpolarised protons for example (where all spin states are equally likely),

the probability of finding two protons in a triplet state is three times as large as finding them in

the singlet state. Therefore the differential cross section for this case is

dσ

dΩ
=

3

4

dσt

dΩ
+

1

4

dσs

dΩ

= |f(θ)|2 + |f(π − θ)|2 −Re

[

f∗(θ)f(π − θ)

]

(5.80)

Analogously to the boson case discussed in the last problem, the singlet term in (5.80) is a sum

over only even l’s while the triplet term is a sum over the odd l’s. The resulting differential cross

section therefore has mixed symmetry with respect to θ.

5.9 *Modern electronic structure theory

In this section we review the theoretical foundations of some of the computational techniques that

are currently used in electronic structure calculations for real systems. The relative merits of

the different techniques for calculating the electronic structure of atoms, molecules and solids are

considered. The progress made over the past decade in developing quantum Monte Carlo (QMC)

methods as a tool for tackling realistic continuum electronic structure problems is described.

5.9.1 *The many-electron problem

Within the Born-Oppenheimer approximation, the time independent Schrödinger equation for a

fully interacting many-electron system is

ĤΨ =
N
∑

i=1

(

− h̄2

2m
∇2

i −
∑

α

Zαe
2

4πε0|~ri − ~dα|

)

Ψ +
1

2

∑

i

∑

j 6=i

e2

4πε0|~ri − ~rj |
Ψ = EΨ , (5.81)

where Ψ is the N -electron wave functions, ~ri are the electron positions, ~dα are the positions of the

ions and Zα are the ionic charges. This equation is impossible to solve exactly so approximate

solutions must be sought. One of the main challenges of condensed matter physics is to try to

find good, workable approximations that contain the essence of the physics involved in a particular

problem and to obtain the most accurate solutions possible. For the rest of this chapter all equations

will be written in atomic units, e = me = h̄ = 4πε0 = 1.
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5.9.2 *One-electron methods

One of the most common ways of dealing with the many-electron problem is to assume that each

electron can be considered separately. Each electron is treated as moving in a mean field potential,

U(~r). This potential models the effects of all the other particles in the system, as well as any

external potential acting on the system.

The one-electron equations are of the form

−1

2
∇2ψi(~r) + U(~r)ψi(~r) = εiψi(~r) , (5.82)

where ψi(~r) is a one-electron wave function and εi are Lagrange multipliers which arise from the

fact that the one-electron wave functions are normalised. Choosing an appropriate U(~r) for the

single electron is still a very complicated problem. U(~r) depends upon the interactions between

the electrons and therefore on the one-electron wave functions. Since initially neither of these

quantities, U(~r) or ψi(~r), is known, it is necessary to solve Eq.(5.82) in a self-consistent manner.

What this means is that we make a guess for the ψi, then construct the U (how one does this is

described below) and proceed to solve the above equation to get the new value for ψi. One then

repeats this procedure until the ψi have converged in some prescribed manner.

5.9.3 *Hartree approximation

This approximation starts from the one-electron equations (5.82). U(~r) is chosen to try to model

the interaction terms in this equation. The ions contribute a potential

Uion(~r) = −
∑

α

Zα

|~r − ~dα|
. (5.83)

All the other electrons in the system also contribute to the potential. The potential due to the

electrons is approximated by the electrostatic interaction with all the others, which can be written

in terms of the electron density, ρ(~r), as

UH(~r) =

∫

d~r′[ρ(~r′) − ρi(~r
′)]

1

|~r − ~r′| , (5.84)

where the self-interaction potential due to electron i has been removed.

To actually calculate the Hartree potential it is necessary to know the electronic charge distribution

of the system. If the electrons are assumed to be independent of each other, then it is straightforward

to construct ρ(~r) from the single electron eigenstates

ρ(~r) =
∑

i

|ψi(~r)|2 , (5.85)
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where the summation over i includes all occupied states. Using this charge density the total one-

electron potential is

Ui(~r) = Uion(~r) +
∑

j 6=i

∫

d~r′|ψj(~r
′)|2 1

|~r − ~r′| . (5.86)

The potential Ui(~r) is different for each orbital, and therefore the orbitals are not orthogonal. Note

that Ui(~r) depends on all the other orbitals, ψj , and so the solution of Eq.(5.82) must be found

self-consistently.

The choice of U(~r) in Eq.(5.86) all seems a bit like guesswork, but it can also be derived using

the variational principle. If the electrons are assumed to be non-interacting, and so the N -electron

wave function is just the product of the one-electron wave functions,

Ψ = ψ1(~r1)ψ2(~r2) . . . ψN (~rN ) . (5.87)

then using the variational principle, by minimising the expectation of Ĥ with respect to the single-

particle orbitals, one can derive the Hartree equations:
(

−1

2
∇2 + Uion(~r)

)

ψi(~r) +
∑

j(6=i)

∫

d~r′
|ψj(~r

′)|2
|~r − ~r′| ψi(~r) = εiψi(~r) , (5.88)

5.9.4 *Hartree-Fock approximation

The Hartree-Fock approximation is an extension of the above Hartree approximation to include the

permutation symmetry of the wave function, which leads to the exchange interaction. Exchange is

due to the Pauli exclusion principle, which states that the total wave function for the system must

be antisymmetric under particle exchange. This means that when two arguments are swapped the

wave function changes sign as follows:

Ψ(~x1, ~x2, . . . , ~xi, . . . , ~xj , . . . , ~xN ) = −Ψ(~x1, ~x2, . . . , ~xj , . . . , ~xi, . . . , ~xN ) , (5.89)

where ~xi includes coordinates of position and spin. Therefore no two electrons can have the same

set of quantum numbers, and electrons with the same spin cannot occupy the same spatial state

simultaneously.

Instead of using the simple product form of the wave function shown in Eq.(5.87), a Slater deter-

minant wave function which satisfies antisymmetry is used

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(~x1) ψ1(~x2) · · · ψ1(~xN )

ψ2(~x1) ψ2(~x2) · · · ψ2(~xN )
...

...

ψN (~x1) ψN (~x2) · · · ψN (~xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (5.90)
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where ψi(~xj) are the one-electron wave functions.

Following exactly the same method of minimising the expectation value of Ĥ with respect to the

one-electron wave functions as was used in the derivation of the Hartree equations, results in the

following set of one-electron equations, the Hartree-Fock equations;

εiψi(~r) =

(

−1

2
∇2 + Uion(~r)

)

ψi(~r) +
∑

j

∫

d~r′
|ψj(~r

′)|2
|~r − ~r′| ψi(~r)

−
∑

j

δsisj

∫

d~r′
ψ∗

j (~r
′)ψi(~r

′)

|~r − ~r′| ψj(~r) , (5.91)

where si labels the spin of particle i. Note the self-interaction cancels out from the second and third

terms. The extra term in these equations, when compared to Eq.(5.88), is known as the exchange

term and is only non-zero when considering electrons of the same spin. The effect of exchange on

the many-body system is that electrons of like spin tend to avoid each other. As a result of this,

each electron has a “hole” associated with it which is known as the exchange hole (or the Fermi

hole). This is a small volume around the electron which like-spin electrons avoid. The charge

contained in the exchange hole is positive and exactly equivalent to the absence of one electron.

Unlike all the other terms acting on ψi , the exchange term is a non-local integral operator and

this makes the Hartree-Fock equations hard to solve in all but a few special cases.

Hartree-Fock calculations, which include the exchange interaction between electrons, are most useful

for performing calculations on relatively small systems as they are considerably more computation-

ally expensive than Hartree and DFT-LDA calculations (see below), due to the non-local exchange

term. Even for atoms, however, Hartree-Fock theory is not ideal. For example, H− is predicted to

be unstable in contradiction to reality.

Various improvements to Hartree-Fock theory have been attempted. Unrestricted Hartree-Fock

theory ignores some of the simplifying restrictions which are normally applied to Hartree-Fock

wave functions. The exchange interaction is allowed to make the spatial parts of spin up and spin

down electron wave functions different for the same state. However, although for some systems

this results in an improvement, especially for open shell systems, it also sometimes produces worse

results than conventional Hartree-Fock theory. In general, Hartree-Fock theory is most useful as a

tool for providing qualitative answers. It is also used as the starting point for other methods, such

as some quantum Monte Carlo calculations.
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5.9.5 *Density functional methods

Computations based on density functional structure theory are the most popular approach to

determining the electronic properties of real materials in physics, chemistry and material science.

Density functional theory is a formally exact theory based on the charge density of a system.

Kohn-Sham density functional theory is a formally exact one-electron theory. Working within the

Born-Oppenheimer approximation, the many-body Schrödinger equation,

ĤΨ =
N
∑

i=1

(

−1

2
∇2

i −
∑

α

Zα

|~ri − ~dα|

)

Ψ +
1

2

∑

i

∑

j 6=i

1

|~ri − ~rj |
Ψ = EΨ , (5.92)

where Ψ is the many-body wave function, is replaced by a set of N one-electron equations of the

form
(

−1

2
∇2 + V (~r)

)

ψi(~r) = εψi(~r) , (5.93)

where ψi(~r) is a single-electron wave function. These one-electron equations contain a potential

V (~r) produced by all the ions and the electrons. Density functional theory properly includes all

parts of the electron-electron interaction, i.e. the Hartree potential

VH(~r) =

∫

d~r′
ρ(~r′)
|~r − ~r′| , (5.94)

where ρ is the charge density of all the electrons, a potential due to exchange and correlation effects,

VXC(~r), and the external potential due to the ions, Vext(~r),

V (~r) = Vext(~r) + VH(~r) + VXC(~r) . (5.95)

Hohenberg and Kohn (Phys. Rev. 136, B864 (1964)) originally developed density functional theory

for application to the ground state of a system of ‘spinless fermions’. In such a system the particle

density is given by

ρ(~r) = N

∫

|Ψo(~r, ~r2, . . . , ~rN )|2d~r2 . . . d~rN , (5.96)

with Ψ0 being the many-body ground state wave function of the system. It can be shown that

the total ground state energy of the system is a functional of the density, E[ρ(~r)], and that if the

energy due to the electron-ion interactions is excluded the remainder of the energy is a universal

functional of the density, F [ρ(~r)] (i.e. F [ρ(~r)] does not depend on the potential from the ions).

Kohn and Sham (Phys. Rev. 140, A1133 (1965)) introduced a method based on the Hohenberg-

Kohn theorem that enables one to minimise the functional E[ρ(~r)] by varying ρ(~r) over all densities

containing N electrons. This constraint is introduced by the Lagrange multiplier, µ, chosen so that
∫

ρ(~r)d~r = N ,

δ

δρ(~r)

[

E[ρ(~r)] − µ

∫

ρ(~r)d~r

]

= 0



5.9. *MODERN ELECTRONIC STRUCTURE THEORY 155

⇒ δE[ρ(~r)]

δρ(~r)
= µ . (5.97)

Kohn and Sham chose to separate F [ρ(~r)] into three parts, so that E[ρ(~r)] becomes

E [ρ(~r)] = Ts [ρ(~r)] +
1

2

∫ ∫

ρ(~r)ρ(~r′)
|~r − ~r′| d~rd~r

′ + EXC [ρ(~r)] +

∫

ρ(~r)Vext(~r)d~r , (5.98)

where Ts [ρ(~r)] is defined as the kinetic energy of a non-interacting electron gas with density ρ(~r),

Ts [ρ(~r)] = −1

2

N
∑

i=1

∫

ψ∗
i (~r)∇2ψi(~r)d~r . (5.99)

Eq.(5.98) also acts as a definition for the exchange-correlation energy functional, EXC [ρ(~r)]. We

can now rewrite Eq.(5.97) in terms of an effective potential, Veff(~r), as follows

δTs [ρ(~r)]

δρ(~r)
+ Veff(~r) = µ , (5.100)

where

Veff(~r) = Vext(~r) +

∫

ρ(~r′)
|~r − ~r′|d~r

′ + VXC(~r) , (5.101)

and

VXC(~r) =
δEXC [ρ(~r)]

δρ(~r)
. (5.102)

Now, if one considers a system that really contained non-interacting electrons moving in an external

potential equal to Veff(~r), as defined in Eq.(5.101), then the same analysis would lead to exactly

the same Eq.(5.100). Therefore, to find the ground state energy and density, E0 and ρ0(~r) all one

has to do is solve the one-electron equations
(

−1

2
∇2

i + Veff(~r) − εi

)

ψi(~r) = 0 . (5.103)

As the density is constructed according to

ρ(~r) =
N
∑

i=1

|ψi(~r)|2 , (5.104)

these equations (5.101-5.103) must be solved self-consistently with Eq.(5.104).

The above derivation assumes that the exchange-correlation functional is known. At present nu-

merical exchange-correlation potentials have only been determined for a few simple model systems,

and so most current density functional calculations use the local density approximation (LDA).

The LDA approximates the XC functional by a simple function of the density at any position, ~r.

The value of this function is the XC energy per electron in a uniform homogeneous electron gas of

density n(~r). The LDA expression for EXC [n(~r)] is

EXC [n(~r)] ≈
∫

εXC(n(~r))n(~r)d~r . (5.105)
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The LDA is only expected to be accurate for systems with slowly varying electronic charge densities,

which is not the case in most real systems, but despite this it has been surprisingly successful. The

success is currently understood to be due to two main features:

• The sum rule on the exchange-correlation hole is conserved, i.e. within the LDA, the exchange-

correlation hole contains exactly an equal and opposite amount of charge to the electron it

surrounds, and

• The exchange-correlation energy only depends on the spherical average of the exchange-

correlation hole, i.e.

EXC [ρ] =
1

2

∫ ∫

ρ(~r) ρXC(~r, |~r − ~r′|)
|~r − ~r′| d~r d~r′ , (5.106)

where ρXC(~r, |~r − ~r′|) is the spherical average of ρXC(~r, ~r′) about ~r′ = ~r for each ~r.

Therefore, the fact that in the LDA ρXC is constrained to be spherically symmetric about ~r′ = ~r

is not a handicap.

The LDA is remarkably accurate, but often fails when the electrons are strongly correlated, as

in systems containing d and f orbital electrons. In strongly correlated systems, the correlations

may change the whole nature of the ground state and the local density approximation, derived

from homogeneous electron gas results, is not successful. For example, the high Tc superconductor

La2CuO4 is an anti-ferromagnetic insulator but the LDA finds it to be metallic. Also FeO, MnO

and NiO all have Mott metal-insulator transitions but the LDA predicts that they are either

semiconductors or metals. Other failings of the LDA are that it tends to overbind atoms in solids,

that it finds stable negative ions to be unstable and that it predicts iron to be fcc paramagnetic,

when it is actually bcc ferromagnetic.

5.9.6 *Shortcomings of the mean-field approach

The main problem with Hartree, Hartree-Fock and LDA methods is the approximations they in-

troduce in the process of reducing the many-body problem to a one-electron problem. Hartree and

Hartree-Fock calculations do not, in general, provide satisfactory results and are best used as a

qualitative guide to the expected ground state properties. The configuration interaction method

(popular in quantum chemistry), while in principle exact, is in practice only useful for small systems;

for condensed matter systems it is not of practical value.

Density functional theory within the LDA provides the current staple method of performing elec-

tronic structure calculations and for many purposes gives good results. However, it fails for highly
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correlated systems and tends to underestimate band gaps and overestimates cohesive energies and

hence is not ideal.

A straightforward, accurate approach to many-body systems that is now gaining popularity in the

electronic structure theory community is the quantum Monte Carlo method, described in the next

section.

5.9.7 *Quantum Monte Carlo methods

Applying QMC techniques to study the electronic structure of real systems is relatively new. The

variational principle provides the starting point with the aim of finding an approximate solution

to Schrödinger’s equation. As we saw in Chapter 3, the expectation value of a Hamiltonian, Ĥ,

calculated using a trial wave function, ΨT , is never lower in value than the true ground state energy,

ε0, which is the expectation value of Ĥ calculated using the true ground state wave function, Ψ0.

The success of the method depends on making a physically plausible guess at the form of the

ground state wave function, ΨT , of the Hamiltonian, Ĥ. This guess will be referred to as the

trial/guiding wave function. The “trial” part of the name refers to the use of the wave function as

a guess of the true ground state wave function to be used as the input wave function in a variational

quantum Monte Carlo (VMC) calculation. The “guiding” part refers to the use of the same wave

function as an input wave function in the diffusion quantum Monte Carlo (DMC) algorithm as part

of the mechanism to introduce importance sampling. The trial/guiding wave function depends

on a number of variable parameters which can be adjusted to minimise the energy expectation

value. If the guessed values of these parameters are good and the chosen functional form builds in

enough variational freedom to adequately describe the physics of the system being studied, then

very accurate estimates of the ground state energy can be obtained. Variational quantum Monte

Carlo (VMC) calculations are direct applications of the above variational principle.

The variational quantum Monte Carlo (VMC) method is the simpler of the two quantum Monte

Carlo methods. It is based on a combination of the variational principle and Monte Carlo evaluation

of integrals using importance sampling based on the Metropolis algorithm.

Within the Born-Oppenheimer approximation, the Hamiltonian for a many-body system can be

written as

Ĥ =
N
∑

i=1

−1

2
∇2

i −
∑

i

∑

α

Zα

|~ri − ~dα|
+

1

2

∑

i

∑

j 6=i

1

|~ri − ~rj |
+

1

2

∑

α

∑

β 6=α

ZαZβ

|~dα − ~dβ |
. (5.107)

The VMC method relies on one being able to construct a trial wave function, ΨT , that is a reason-

ably good approximation to the true ground state wave function, Ψ0. The energy associated with
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the trial wave function is given by

ET =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

=

∫

Ψ∗
T (~R)ĤΨT (~R)d~R

Ψ∗
T (~R)ΨT (~R)d~R

. (5.108)

where ~R denotes the 3N -dimensional vector of electronic positions. The variational principle ensures

that ET is a rigorous upper bound to the true ground state energy, E0.

The VMC method is a Monte Carlo method for evaluating the multi-dimensional integral in

Eq.(5.108). This is achieved by rewriting Eq.(5.108) in the following form:

ET =

∫

∣

∣

∣ΨT (~R)
∣

∣

∣

2 ĤΨT (~R)

ΨT (~R)
d~R

∫

∣

∣

∣ΨT (~R)
∣

∣

∣

2 . (5.109)

The Metropolis algorithm is used to sample a series of points, ~R, in configuration space. At each

of these points the “local energy”, ĤΨT (~R)

ΨT (~R)
, is evaluated. After a sufficient number of evaluations

of the local energy have been made, the average is taken:

EV MC =
1

N

N
∑

i=1

ĤΨT ( ~Ri)

ΨT ( ~Ri)
−→

N → ∞
ET . (5.110)

(The Metropolis algorithm is a method of ensuring that, in the limit of large N , the ~Ri are sampled

from |ΨT (~R)|2.)



Chapter 6

Density Operators

6.1 Introduction

A quantum-mechanical wave function (or state vector), when it exists, conveys the maximum

amount of information permitted by quantum mechanics concerning the properties of a physical

system in the state described by the wave function. Situations in which we have accurate wave

functions for a physical system are actually quite rare. More often, the complexity of the system

owing to its many degrees of freedom precludes the possibility of constructing a wave function.

It is then necessary to resort to statistical methods. When the state of an incompletely prepared

system is only partially known, we resort to assigning a probability to all possible state vectors that

the system could be in. The synthesis of this statistical nature with the probabilities arising from

the quantum mechanics of state vectors can be made using a mathematical entity, the density

operator. The density operator formalism was introduced independently by Landau and von

Neumann, and enables us to reformulate the laws of quantum mechanics more generally than with

the formalism using state vectors or wave functions alone. All predictions – of a statistical nature –

that one can make at a given time about a physical system can be found once we know its density

operator. Furthermore, the density operator formalism enables us to extend quantum mechanics to

the description of statistical mixtures representing systems which are not well known or to describe

the state of a part of a quantum system (i.e. a subsystem). Here we will examine the properties of

this operator and its application to quantum statistical mechanics.

159
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6.2 Pure and mixed states

In classical mechanics, the dynamical state of a system is completely determined once the values of

the positions and momenta of all the particles are known. The state of the system at any subsequent

time can be predicted with certainty (since all one needs to do is integrate the equations of motion).

In quantum mechanics however this is not the case. A precise simultaneous measurement of two

physical variables is only possible if the two operator corresponding to the two variables commute.

The largest set of mutually commuting independent observables, {Â, B̂, . . .} that can be found will

give the most complete characterisation possible. (This is just the complete set of commuting

observables (CSCO) discussed in Chapter 1.) The measurement of another variable whose

operator is not contained in the above set of operators necessarily introduces uncertainty into at

least one of those already measured. This means that it is not possible to give a more complete

specification of the system. In general, the maximum information which can be obtained on a system

consists of the eigenvalues of the CSCO. The system is then completely specified by assigning the

state vector |a, b, . . .〉 in a Hilbert spaceH to it. If the measurement of the observables {Â, B̂, . . .} on

the state |a, b, . . .〉 is immediately repeated, we get the same values a, b, . . . again. The existence of

such a set of experiments (for which the results can be predicted with certainty) gives a necessary

and sufficient characterisation for the state of “maximum knowledge”. The states of maximum

knowledge are called pure states. Pure states represent the ultimate limit of precise observation

as permitted by the uncertainty principle and are the quantum mechanical analog of classical states

where all positions and momenta of all particles are known.

In practice, the state of a system is not pure and cannot be represented by a single state vector.

However, it can be described by stating that the system has certain probabilities p1, p2, . . . of being

in the pure states |Ψ1〉, |Ψ2〉, . . ., respectively. Therefore in the case of incomplete knowledge about

the state of the system, it is necessary to use a statistical description in the same sense as classical

statistical mechanics. Systems which cannot be characterised by a single-state vector are called

mixed states.

Consider an ensemble of particles in the pure state |Ψ〉. If this state is not one of the eigenstates of

the observable Â then measurements of the corresponding physical quantity will produce a variety

of results, each of which is an eigenvalue of Â. If similar measurements are made on a very large

number of particles, all of which were in the same state |Ψ〉, then, in general, all the possible

eigenvalues of |Ψ〉 would be obtained. The average of these values is given by the expectation

value 〈Â〉 of the observable corresponding to Â which is defined by the matrix element

〈Â〉 = 〈Ψ|Â|Ψ〉 (6.1)
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where we have assumed that |Ψ〉 is normalised.

In order to obtain 〈Â〉 for a mixture of states, |Ψ1〉, |Ψ2〉, . . ., the expectation values 〈Ψi|Â|Ψi〉 of

each of the pure state components must be calculated and then averaged by summing over all pure

states multiplied by its corresponding statistical weight pi:

〈Â〉 =
∑

i

pi 〈Ψi|Â|Ψi〉 (6.2)

where we have again assumed that the |Ψn〉 are normalised. Note that statistics enter into Eq.

(6.2) in two ways: First of all in the quantum mechanical expectation value 〈Ψi|Â|Ψi〉 and secondly

in the ensemble average over these values with the weights pi. While the first type of averaging is

connected with the perturbation of the system during the measurement (and is therefore inherent in

the nature of quantisation), the second averaging is introduced because of the lack of information as

to which of the several pure states the system may be in. This latter averaging closely resembles that

of classical statistical mechanics and it can be conveniently performed by using density operator

techniques.

6.3 Properties of the Density Operator

The density operator is defined by

ρ̂ =
∑

i

pi|Ψi〉〈Ψi| (6.3)

where pi is the probability of the system being in the normalised state |Ψi〉 and the sum is over all

states that are accessible to the system. The probabilities pi satisfy

0 ≤ pi ≤ 1,
∑

i

pi = 1,
∑

i

p2
i ≤ 1 (6.4)

For a pure state there is just one pi (which is equal to unity) and all the rest are zero. In that case

ρ̂ = |Ψ〉〈Ψ| (pure state) (6.5)

Let {|ψi〉} be a complete orthonormal set which serves as a basis for the expansion of |Ψi〉 (and

from which we can construct the matrix representation of state vectors and operators). We have

|Ψi〉 =
∑

n

cni |ψn〉 (6.6)

and from the orthonormality of the {|ψi〉},

cni = 〈ψn|Ψi〉 (6.7)
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We now construct the density matrix which consists of the matrix elements of the density operator

in the {|ψi〉} basis:

〈ψn|ρ̂|ψm〉 =
∑

i

pi〈ψn|Ψi〉〈Ψi|ψm〉

=
∑

i

pi cni c
∗
mi (6.8)

which characterises ρ̂ as a Hermitian operator since

〈ψn|ρ̂|ψm〉 = 〈ψm|ρ̂|ψn〉∗ (6.9)

(given that the pi are real), i.e we have

ρ̂ = ρ̂† (6.10)

From Eq. (6.8), the probability of finding the system in the state |ψn〉 is given by the diagonal

element

〈ψn|ρ̂|ψn〉 =
∑

i

pi |cni|2 (6.11)

which gives a physical interpretation of the diagonal elements of the density operator. Because

probabilities are positive numbers, we have

〈ψn|ρ̂|ψn〉 ≥ 0 (6.12)

The trace of ρ̂ (i.e. the sum of the diagonal matrix elements) is

Tr ρ̂ =
∑

n

〈ψn|ρ̂|ψn〉

=
∑

i

∑

n

pi 〈ψn|Ψi〉 〈Ψi|ψn〉

=
∑

i

pi〈Ψi|Ψi〉

=
∑

i

pi

= 1 (6.13)

(Since the trace of an operator is an invariant quantity, the above result is independent of the basis.)

As ρ̂ is Hermitian, the diagonal elements 〈ψn|ρ̂|ψn〉 must be real and from Eq. (6.8) it follows that

0 ≤ 〈ψn|ρ̂|ψn〉 ≤ 1 (6.14)
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Note that for a pure state, 〈ψn|ρ̂|ψn〉 = |cn|2 , which is the probability of finding the system in the

state ψn.

Consider the matrix elements of ρ̂2:

〈ψn|ρ̂2|ψm〉 =
∑

k

〈ψn|ρ̂|ψk〉 〈ψk|ρ̂|ψm〉

=
∑

i

∑

j

∑

k

pi pj 〈ψn|Ψi〉〈Ψi|ψk〉 〈ψk|Ψj〉〈Ψj |ψm〉 (6.15)

where we have used Eq. (6.3).

Problem 1: Using (6.15), show that

Tr ρ̂2 ≤ 1 (6.16)

For a pure state, there is only one pi and it is equal to unity. Therefore

Tr ρ̂2 = 1 (pure state) (6.17)

and

ρ̂2 = |Ψ〉〈Ψ|Ψ〉〈Ψ|

= |Ψ〉〈Ψ|

= ρ̂ (pure state) (6.18)

i.e. ρ̂ is idempotent for a pure state. Thus whether a state is pure or not can be established by

testing whether (6.17) or (6.18) is satisfied or not.

We now derive the expectation value of an operator Â for pure as well as mixed states. Let

〈Â〉i = 〈Ψi|Â|Ψi〉 (6.19)

and

〈Â〉 =
∑

i

pi 〈Â〉i (6.20)

The distinction between 〈Â〉i and 〈Â〉 is that the former is a quantum-mechanical average or the

expectation value of an operator Â when the system is definitely in the state |Ψi〉. On the other

hand, 〈Â〉 is a statistical or ensemble average which from (6.20), is seen to be the weighted average

of 〈Â〉i taken over all states that the system may occupy. For pure states, we have

〈Â〉 = 〈Â〉i (pure state) (6.21)
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Now consider the operator ρ̂Â. From (6.3) we have

ρ̂Â =
∑

i

pi |Ψi〉〈Ψi| Â (6.22)

In the {|ψi〉} basis,

〈ψn|ρ̂Â|ψm〉 =
∑

i

pi 〈ψn|Ψi〉〈Ψi|Â|ψm〉 (6.23)

Taking the trace of ρ̂Â,

Tr ρ̂Â =
∑

n

〈ψn|ρ̂Â|ψn〉

=
∑

i

∑

n

pi 〈ψn|Ψi〉〈Ψi|Â|ψn〉

=
∑

i

pi 〈Ψi|Â|Ψi〉

= 〈Â〉 (6.24)

Thus the average value of an operator for a system in either a pure or mixed state, is known as soon

as the density operator is known. Therefore the density operator contains all physically

significant information on the system.

To summarise, the density operator ρ̂ has the following properties:

• ρ̂ is Hermitean: ρ̂ = ρ̂†. This follows from the fact that the pi are real. This property means

that the expectation value of any observable is real.

• ρ̂ has unit trace: Tr ρ̂ = 1.

• ρ̂ is non-negative: 〈Φ|ρ̂|Φ〉 ≥ 0 ∀ |Φ〉 ∈ H

• The expectation value of an operator Â is given by 〈Â〉 = Tr ρ̂Â.

6.3.1 Density operator for spin states

Suppose the spin state of an electron is given by

|Ψ〉 = | ↑〉 (6.25)

so that the density operator is

ρ̂ = | ↑〉〈↑ | (6.26)
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In the basis {| ↑〉, | ↓〉} (i.e. the eigenstates of Ŝz, the z-component of the spin angular momentum

of the electron), the density matrix is

ρ̂ =

(

1 0

0 0

)

(6.27)

Problem 2: Verify (6.27) and hence show that the expectation values of the operators Ŝx, Ŝy, Ŝz

are 0,0 and 1
2 h̄ respectively.

More generally, if the electron is in a state described by

|Ψ〉 = a1| ↑〉 + a2| ↓〉 (6.28)

with

|a1|2 + |a2|2 = 1

the density operator is

ρ̂ =

(

|a1|2 a1a
∗
2

a2a
∗
1 |a2|2

)

(6.29)

which indicates that the diagonal elements |a1|2 and |a2|2 are just the probabilities that the electron

is the state | ↑〉 and | ↓〉 respectively.

Another useful form for the density matrix for spin- 1
2 particles is obtained by writing

ρ̂ = c0 I + c1 Ŝx + c2 Ŝy + c3 Ŝz (6.30)

where I is the unit 2 × 2 matrix and the ci’s are real numbers. The density matrix becomes

ρ̂ =

(

c0 + 1
2c3

1
2(c1 − ic2)

1
2(c1 + ic2) c0 − 1

2c3

)

(6.31)

(where we have set h̄ = 1).

Problem 3: Verify (6.31) using the definition of the spin operators in terms of the Pauli matrices.

Show that c0 = 1
2 and the expectation values of Ŝx, Ŝy, Ŝz are given by 1

2c1,
1
2c2,

1
2c3 respectively.

Hence show that the density operator can be written compactly as

ρ̂ =
1

2

[

I + 〈σ̂〉 · σ
]

where σ = (σx, σy, σz) is the vector whose components are the Pauli matrices.

Problem 4: By analogy with the polarisation of the spin- 1
2 case discussed in this section, the

polarisation of a light quantum can be described by a two-component wave function

(

a

b

)

, where
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|a|2 and |b|2 are the probabilities that the photon is polarised in one or the other of two mutually

perpendicular directions (or that the photon is right- or left-hand circularly polarised). If we want

to determine the polarisation of a photon, we could, for instance, use a filter, which we shall call a

detector (although strictly speaking it is not a detector but a device to prepare for a measurement).

Such a filter could correspond to a pure state, described by a wave function

Ψdet = cdet
1 Ψ1 + cdet

2 Ψ2

where

Ψ1 =

(

1

0

)

, Ψ2 =

(

0

1

)

(6.32)

are the wave functions corresponding to the two polarisation states. This pure state corresponds

to a 2 × 2 detector density matrix ρ̂det given by its matrix elements

ρdet
ij = cdet

i · (cdet
j )∗

Find an expression for the probability of a response of a detector described by ρ̂det to a photon in

a state described by a density matrix ρ̂.

6.3.2 Density operator in the position representation

The density operator in the position representation is defined by

ρ(x′, x) = 〈x′|ρ̂|x〉

=
∑

i

pi Ψi(x
′) Ψ∗

i (x) (6.33)

which, for a pure state becomes

ρ(x′, x) = Ψ(x′) Ψ∗(x) (pure state) (6.34)

The expectation value for an operator Â is then given by

〈Â〉 = Tr ρ̂ Â

=

∫

dx 〈x|ρ̂Â|x〉

=

∫

dx 〈x|ρ̂
(∫

dx′|x′〉〈x′|
)

Â|x〉

=

∫ ∫

dx′ dx 〈x|ρ̂|x′〉 〈x′|Â|x〉

=

∫ ∫

dx′ dx ρ(x, x′)A(x′, x) (6.35)
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Problem 5: Show that

(a) When Â = x̂ , i.e. the position operator, then

〈x̂〉 =

∫

dxx ρ(x, x)

(b) When Â = p̂ , i.e. the momentum operator, then

〈p̂〉 = − h̄
i

∫

dx

[

∂

∂x
ρ(x, x′)

]

x′=x

Problem 6: Often one is dealing with a system which is part of a larger system. Let x and q

denote, respectively, the coordinates of the smaller system and the coordinates of the remainder of

the larger system. The larger system will be described by a normalised wave function Ψ(x, q) which

cannot necessarily be written as a product of functions depending on x and q only. Let Â be an

operator acting only on the x variables, let Ĥ be the Hamiltonian describing the smaller system,

and let the density operator ρ̂ be defined in the position representation by the equation

〈x|ρ̂|x′〉 =

∫

Ψ∗(q, x′) Ψ(q, x) dq (6.36)

where the integration is over all the degrees of freedom of the remainder of the larger system.

(a) Express the expectation value of Â in terms of ρ̂ for the case where the larger system is

described by the wave function Ψ(q, x).

(b) What is the normalisation condition for ρ̂?

(c) Find the equation of motion for ρ̂.

Problem 7: If the wave function Ψ(q, x) of the preceding problem can be written in the form

Ψ(q, x) = Φ(q)χ(x) (6.37)

we are dealing with a pure state. Prove that the necessary and sufficient condition for the pure

state is that ρ̂ is idempotent, i.e. that

ρ̂2 = ρ̂ (6.38)
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6.4 Density operator in statistical mechanics

Let {Ψn} be a complete set of orthonormal functions (eigenstates of the Hamiltonian Ĥ for the

system), that satisfy

ĤΨn = EnΨn (6.39)

and let the states be occupied according to the Boltzmann distribution

pn = Ne−βEn (6.40)

where pn is the probability of finding the system in the eigenstate Ψn with energy En, β = 1/kT

with k the Boltzmann constant, T the absolute temperature and N a normalisation constant chosen

to ensure that
∑

n

pn = 1

Condition (6.40) defines thermal equilibrium and the corresponding density operator ρ̂(β) is

(from (6.3)):

ρ̂(β) = N
∑

n

e−βEn |Ψn〉〈Ψn| (6.41)

Since

e−βĤ |Ψn〉 = e−βEn |Ψn〉 (6.42)

this enables us to write

ρ̂(β) = N
∑

n

e−βEn |Ψn〉〈Ψn|

= N
∑

n

e−βĤ |Ψn〉〈Ψn|

= Ne−βĤ
∑

n

|Ψn〉〈Ψn|

= Ne−βĤ (6.43)

To determine N , we note that

Tr ρ̂(β) = N Tr e−βĤ

= 1 (6.44)

which implies

N =
1

Tr e−βĤ
(6.45)
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Hence the density operator under thermal equilibrium is

ρ̂(β) =
e−βĤ

Tr e−βĤ

=
1

Z
e−βĤ (6.46)

where

Z = Tr e−βĤ (6.47)

is known as the canonical partition function. (Note that the partition function is a function of

absolute temperature, T , the volume V , and the number of particles that make up the system, N .)

We see that from the knowledge of the density operator in any representation, one can determine

the partition function and therefore all thermodynamic properties of the system. For instance, the

average of an observable Â is given by

〈Â〉 = Tr ρ̂ Â

=
Tr

[

e−βĤ Â

]

Tr

[

e−βĤ

] (6.48)

The mean energy of the system (i.e. the internal energy) is given by U where

U = 〈Ĥ〉

=
Tr

[

e−βĤ Ĥ

]

Tr

[

e−βĤ

]

= − ∂

∂β
ln

(

Tr e−βĤ
)

= − ∂

∂β
ln Z(T, V,N) (6.49)

From the partition function, we obtain all thermodynamic observables:

S = −kTr (ρ̂ ln ρ̂) (entropy)

= k β 〈Ĥ〉 + k ln Z(T, V,N)

F = U − TS (Helmholtz free energy)
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= −kT ln Z(T, V,N)

= −kT ln

[

Tr

{

e−βĤ
}]

(6.50)

We now calculate the density operator (in various representations) for some concrete cases.

6.4.1 Density operator for a free particle in the momentum representation

We determine the density operator in the momentum representation for a free particle in a box of

volume L3 with periodic boundary conditions. The Hamiltonian is given by Ĥ = p̂2/2m and the

energy eigenfunction are plane waves;

Ĥ|ψk〉 = E|ψk〉 (6.51)

with

E =
h̄2k2

2m
(6.52)

and |ψk〉 defined by

ψk(r) =
1√
V
eik·r

k =
2π

L
(nx, ny, nz)

ni = 0,±1,±2, . . . (6.53)

Note that the energy eigenvalues are discrete but their mutual separation for macroscopic volumes

is so small that one may treat them as essentially continuous. The advantage of the formulation

using a box and periodic boundary conditions is that one has automatically introduced into the

formalism a finite volume for the particles, which is not the case for free plane waves we have used

so far (in scattering theory for example). The functions ψk(r) are orthonormalized,

〈ψk′ |ψk〉 = δk,k′

= δnx′ ,nx δny′ ,ny δnz ,nz (6.54)

and complete,
∑

k

ψ∗
k(r′)ψk(r) = δ(r′ − r) (6.55)
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The canonical partition function is

Z(T, V, 1) = Tr e−βĤ

=
∑

k

〈ψk|e−βĤ |ψk〉

=
∑

k

e−
βh̄2

2m
k2

(6.56)

Since the eigenvalues k are very close together in a large volume, we can replace the sum in (6.56)

by an integral.

Z(T, V, 1) =
V

(2π)3

∫

dk e−
βh̄2

2m
k2

=
V

(2π)3

(

2mπ

βh̄2

)3/2

=
V

λ3
(6.57)

where λ is called the thermal wavelength. The matrix elements of the density operator thus becomes

〈ψk′ |ρ̂|ψk〉 =
λ3

V
e−

βh̄2

2m
k2

δk,k′ (6.58)

which is a diagonal matrix.

6.4.2 Density operator for a free particle in the position representation

We look for the canonical density operator in the position representation for a free particle in a

box of volume V and periodic boundary conditions. We have

〈r′|ρ̂|r〉 =
∑

k,k′

〈r′|k′〉 〈k′|ρ̂|k〉 〈k|r〉

=
∑

k,k′

ψk′(r′)
{

λ3

V
e−

βh̄2

2m
k2

δk,k′

}

ψ∗
k(r)

=
λ3

V

1

(2π)3

∫

dk exp

{

− βh̄2

2m
k2 + ik · (r′ − r)

}

(6.59)
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Problem 8: Show that Eq. (6.59) reduces to

〈r′|ρ̂|r〉 =
λ3

V

1

(2π)3
exp

{

− m

2βh̄2 (r′ − r)2
}(

2mπ

βh̄2

)3/2

=
1

V
exp

{

− π

λ2
(r′ − r)2

}

(6.60)

Hence in the position representation, the density matrix is no longer a diagonal matrix, but a Gaus-

sian function in (r′−r). The diagonal elements of the density matrix in the position representation

can be interpreted as the density distribution in position space i.e.

〈r′|ρ̂|r〉 = ρ(r) =
1

V
(6.61)

The non-diagonal elements r 6= r′ can be interpreted as the transition probability of the particle

to move from a position r to a new position r′ (though these transitions are restricted to spatial

regions having the size of the thermal wavelengths.) For large temperatures (λ→ 0) this is hardly

observable, but for low temperatures λ may become very large, which implies that quantum effects

play an especially large role at low temperatures.

6.4.3 *Density matrix for the harmonic oscillator

Here, we determine the density matrix for the one-dimensional quantum harmonic oscillator in the

position representation. This result is of great importance in quantum statistical mechanics and

the mathematical steps involved in deriving the final result carry over to other areas of theoretical

physics. We shall use the expression for the energy eigenfunction in the position representation

derived before:

Ψn(q) =

(

Mω

πh̄

)1/4 Hn(x)√
2nn!

exp

{

− 1

2
x2
}

x =

√

Mω

h̄
q (6.62)

and the energy eigenvalues are En = h̄ω(n+ 1
2), and the Hermite polynomials are defined by

Hn(x) = (−1)nex
2

(

d

dx

)n

e−x2

=
ex

2

√
π

∫ +∞

−∞
(−2iu)n exp{−u2 + 2ixu} du (6.63)
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The density operator in the energy representation is trivial:

〈m|ρ̂|n〉 = ρnδmn

ρn =
1

Z
exp

{

− β h̄ω(n+
1

2
)

}

n = 0, 1, 2, . . . (6.64)

where

Z(T, V, 1) =

[

2 sinh

(

1

2
βh̄ω

)]−1

(6.65)

Problem 9†: Verify Eq. (6.64)–(6.65).

In the position representation, we have

〈q′|ρ̂|q〉 =
∑

nn′

〈q′|n′〉〈n′|ρ̂|n〉〈q|n〉

=
∑

nn′

Ψn′(q′)ρnn′Ψ∗
n(q)

=
1

Z

∑

n

exp

{

− β h̄ω(n+
1

2
)

}

Ψ∗
n(q) Ψn(q′)

=
1

Z

(

Mω

πh̄

)1/2

exp

{

− 1

2
(x2 + x′2)

}

×
∞
∑

n=0

1

2nn!
exp

{

− β h̄ω(n+
1

2
)

}

Hn(x)Hn(x′) (6.66)

Problem 10†: Verify the steps leading to (6.66).

Hint: We have twice inserted the complete set of energy eigenfunctions.

Using the integral representation of the Hermite polynomials we get:

〈q′|ρ̂|q〉 =
1

Zπ

(

Mω

πh̄

)1/2

exp

{

+
1

2
(x2 + x′2)

}

×
∫ +∞

−∞
du

∫ +∞

−∞
dv

∞
∑

n=0

(−2uv)n

n!
exp

{

− β h̄ω(n+
1

2
)

}

exp{−u2 + 2ixu}

× exp{−v2 + 2ix′v} (6.67)
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The summation over n can be carried out as follows:

∞
∑

n=0

(−2uv)n

n!
exp

{

− β h̄ω(n+
1

2
)

}

= exp

{

− 1

2
βh̄ω

{ ∞
∑

n=0

1

n!

[

− 2uv exp(−βh̄ω)

]n

= exp

{

− 1

2
βh̄ω

{

exp

{

− 2uv e−βh̄ω
}

(6.68)

Then Eq. (6.67) becomes

〈q′|ρ̂|q〉 =
1

Zπ

(

Mω

πh̄

)1/2

exp

{

+
1

2
(x2 + x′2 − βh̄ω)

}

×
∫ +∞

−∞
du

∫ +∞

−∞
dv exp

{

− u2 + 2ixu− v2 + 2ix′v − 2uv e−βh̄ω
}

(6.69)

The argument in the exponent is a general quadratic form, which can be rewritten in the form

−u2 + 2ixu− v2 + 2ix′v − 2uv e−βh̄ω = −1

2
wT · A · w + ib · w (6.70)

where

A = 2

(

1 e−βh̄ω

e−βh̄ω 1

)

b = 2

(

x

x′

)

w =

(

u

v

)

(6.71)

We now use the general formula

∫

dnw exp

{

− 1

2
wT · A · w + ib · w

}

=
(2π)n/2

[detA]
1

2

exp

{

− 1

2
bT · A−1 · b

}

(6.72)

which holds if A is an invertible symmetric matrix.

Problem 11†: Verify (6.72).

Using (6.72) we get

〈q′|ρ̂|q〉 =
1

Z

(

Mω

πh̄

)1/2 e−
1

2
βh̄ω

[1 − e−2βh̄ω]
1

2
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× exp

{

1

2
(x2 + x′2) − [1 − e−2βh̄ω]−1 (x2 + x′2 − 2xx′e−βh̄ω)

}

=
1

Z

[

Mω

2πh̄ sinh(βh̄ω)

] 1

2

exp

{

− 1

2
(x2 + x′2) coth(βh̄ω) +

xx′

sinh(βh̄ω)

}

(6.73)

Using the identity

tanh

(

1

2
βh̄ω

)

=
cosh(βh̄ω) − 1

sinh(βh̄ω)
=

sinh(βh̄ω)

1 + cosh(βh̄ω)
(6.74)

one finally gets

〈q′|ρ̂|q〉 =
1

Z

[

Mω

2πh̄ sinh(βh̄ω)

]
1

2

× exp

{

− Mω

4h̄

[

(q + q′)2 tanh

(

1

2
βh̄ω

)

+ (q − q′)2 coth

(

1

2
βh̄ω

)]}

(6.75)

The diagonal elements of the density matrix in the position representation yield directly the average

density distribution of a quantum mechanical oscillator (at temperature T ):

ρ(q) =

[

Mω

πh̄
tanh

(

1

2
βh̄ω

)]
1

2

exp

{

− Mω

h̄
tanh

(

1

2
βh̄ω

)

q2
}

(6.76)

which is a Gaussian distribution with width

σq =









h̄

2Mω tanh

(

1
2βh̄ω

)









1

2

(6.77)

Problem 12†: Show that in the limit of high temperatures, βh̄ω � 1,

ρ(q) ≈
(

mω2

2πkT

)
1

2

exp

{

− Mω2q2

2kT

}

(6.78)

and at low temperature βh̄ω � 1,

ρ(q) ≈
(

mω

πh̄

)
1

2

exp

{

− Mωq2

h̄

}

(6.79)

Therefore the density matrix thus contains, for high temperatures, the classical limit, and for very

low temperatures, the quantum mechanical ground state density.


